Gel-Pro Analyzer[®]

Version 4.5 for Windows[™]

スタートアップマニュアル

Media Cybernetics, Inc. 8484 Georgia Avenue, Suite 200 Silver Spring, MD 20910 (301) 495-3305, FAX (301) 495-5964 (米国) http://www.mediacy.com MAN GEL 50N45 2003j

株式会社 日本ローパー メディアサイバネティクス事業部

本社

〒135-0033 東京都江東区深川 2-8-19 サクライビル 3F TEL 03-5639-2751 FAX 03-5639-2774

大阪営業所

〒567-0082 大阪府豊中市新千里東町 1-4-2 千里ライフサイエンスセンタービル 9 F TEL 066-155-0181 FAX 066-6155-0188

Homepage: http://www.planetron.co.jp

著作権について

Copyright 1995-2006 Media Cybernetics, Inc.

All Rights Reserved

(著作権法により、本製品に関するあらゆる権利は保護されています。)

マニュアル翻訳、作成、日本語版著作権

(株)日本ローパー メディアサイバネティクス事業部 〒135-0033 東京都江東区深川2-8-19サクライビル3F

本書の内容を無断で複製、転載することは原著作者および日本語版著作者の権利の侵害となります。

商標、登録商標について

Gel-Pro, Image-Pro, Image-Pro Plus, Image-Pro Express, Auto-Pro, Array-Pro, Materials-Pro, Scope-Pro, Fluoro-Pro, Stage-Pro, AFA, SharpStack, 3D Constructor, IQBase, IQstudio, HALO Image File Format Library, Dr. HALO, HALO, HALO DPE, HALO F/X, HALO Desktop Imagerは、Media Cybernetics, Inc. の登録商標です。

本書に記載されているその他の商標、登録商標は、対応する各会社が所有する 商標や登録商標です。

目次

注記: Gel-Pro Analyzer の動作環境とインストール方法については、別紙の「インストール手順」をご覧下さい。

はじめに
Gel-Pro Analyzer を起動する 1-1
Gel-Pro Analyzer のアプリケーションウィンドウとツール
タイトルバー
メニューバー
ツールバー
ステータスバー1-8
画像ウィンドウ1-8
ダイアログボックスのチェックボタン
ツールパレット
Gel-Pro Analyzer を終了する1-11
第2章 1次元ゲルの解析2-1
測定内容
測定内容2−1 解析画像の要件
測定内容2−1 解析画像の要件
測定内容2-1 解析画像の要件2-1 操作の概要2-2 2.1 実験データの入力
測定内容2-1 解析画像の要件2-1 操作の概要2-2 2.1 実験データの入力2-3 2.2 画像を開く/画像の前処理2-5
測定内容
 測定内容
 測定内容
 測定内容
測定内容2-1解析画像の要件2-1操作の概要2-22.1 実験データの入力2-32.2 画像を開く/画像の前処理2-52.3 測定領域の限定2-72.4 定量2-152.4.1 分子量(Molecular Weight)の測定2-152.4.1.1 分子量スタンダードによる較正2-162.4.1.2 スマイリング補正(Slant)2-20
測定内容2-1解析画像の要件2-1操作の概要2-22.1 実験データの入力2-32.2 画像を開く/画像の前処理2-52.3 測定領域の限定2-72.4 定量2-152.4.1 分子量(Molecular Weight)の測定2-152.4.1.1 分子量スタンダードによる較正2-162.4.1.2 スマイリング補正(Slant)2-202.4.1.3 分子量の算出2-23
測定内容2-1解析画像の要件2-1操作の概要2-22.1 実験データの入力2-32.2 画像を開く/画像の前処理2-52.3 測定領域の限定2-72.4 定量2-152.4.1 分子量(Molecular Weight)の測定2-152.4.1.1 分子量スタンダードによる較正2-162.4.1.2 スマイリング補正(Slant)2-202.4.1.3 分子量の算出2-232.4.2 質量(Amount)の測定2-27
測定内容2-1解析画像の要件2-1操作の概要2-22.1 実験データの入力2-32.2 画像を開く/画像の前処理2-52.3 測定領域の限定2-72.4 定量2-152.4.1 分子量(Molecular Weight)の測定2-152.4.1.1 分子量スタンダードによる較正2-162.4.1.2 スマイリング補正(Slant)2-202.4.1.3 分子量の算出2-232.4.2 質量(Amount)の測定2-272.4.2.1 バックグラウンドの補正2-27

2.4.2.3 較正曲線による較正	2–36
2.4.3 積分光学濃度(IOD)の測定	2–42
2.4.4 相対量の算出	2–43
2.4.5 レーンプロファイル	2–46
2.4.6 表示オプションを使用する	2–50
2.5 測定結果を外部へ出力する	2–57
2.6 データベース	2–63
2.6.1 データベースに測定結果を保存する	2–63
2.6.2 データベースから測定結果を開く	2–65
第3章 ドットブロットの解析	3–1
測定内容	3–1
解析画像の要件	3–1
操作の概要	3–1
3.1 実験データの入力	3–2
3.2 画像を開く/画像の前処理	3–4
3.3 測定領域の限定-ドットの検出	3–6
3.4 ドットの質量の較正	3–15
3.5 定量-測定結果(質量/IOD/相対量)の算出	3–19
3.5.1 質量(マス)の算出	3–19
3.5.2 積分光学濃度(IOD)の算出	3–21
3.5.3 相対量の算出	3–22
3.6 データベースに測定結果を保存する	3–26
第4章 コロニーカウンティング	4–1
測定内容	4–1
解析画像の要件と操作の概要	4–1
4.1 実験データの入力	4–2
4.2 画像を開く	4–4
4.3 オプションの設定	4–5
4.4 画像を平坦化する	4–9
4.5 測定範囲を限定する	4–10

4.6 画像を2値化してコロニーを抽出する	4-11
47 自動カウントを実行し、測定結果を表示する	4–12
1.7 13577772722710、新足相米とひかりの	4-15
第5章 濃度の測定	5–1
測定内容	
解析画像の要件と操作の概要	5–1
5.1 実験データの入力	5–2
5.2 画像を開く	5–4
5.3 濃度の較正を行なう	5–5
5.4 測定領域をトレースし、測定を実行する	5–6
5.5 データベースに測定結果を保存する	5–11
付録A その他のツール	A-1
ツールバー	A-1
AOI(対象領域: Area of Interest)ツール	A-2
その他のコマンドツールボタン	A-3
メニューバー	A-5
ステータスバー	A-6
単一フレームボタンと複数フレームボタン	A-7
ファンクションキー	A-7
AOIに関する解説	A-8
矩形AOIツール	A-9
楕円AOIツール	A-10
自由曲線AOIツール	A-11
Traceツールで自由曲線AOIを定義する方法	A-11
Magic Wandツールで自由曲線AOIを定義する方法	A-15
外接四角形について	A-17
付録B 画像をスキャナで取り込む	B-1
TWAINスキャナから画像を取り込む手順	B-1

Gel-Pro Analyzer スタートアップマニュアル - 【目次】

付録C	空間較正	C-1
寸法	の較正(単位当たりピクセル数)-操作手順	C-2
付録D	21 CFR Part 11対応機能	D−1
Audi	t Trail (コマンドログ)オプション	D–1
Imag	e Info Overlay (画像情報を重ね表示)	D–2
索引.		索引1
ライセン	ンスについて	.ライセンス-1

第1章 さあ、始めましょう

Gel-Pro Analyzer のご採用を有り難うございます。本章では、Gel-Pro Analyzerが備 えるツールのうち、頻繁に使用されるものをご紹介します。

はじめに

本スタートアップマニュアルは、Gel-Pro Analyzer の基本的な使用法について解説したものです。必ず最後までお読みの上、Gel-Pro Analyzer で実際に操作練習を行なって下さい。

Gel-Pro Analyzer の各コマンドについての詳しい説明は、製品に付属の英文マニュア ルと、Help(ヘルプ)メニューの Gel-Pro コマンドで表示されるオンラインヘルプ(英文) もご覧下さい。

Gel-Pro Analyzer を起動する

注記:起動する前に、「スタート」-「プログラム」-「Gel-Pro Analyzer 4.5」にある 「Release Notes」(英文)を必ずお読み下さい。「Release Notes」には、製品に関する 最新情報や、マニュアルに記載されていない情報が記載されています。

I			<u> </u>			
I	E Kontaktadressen.txt	🔚 Gel-Pro Analyzer 4.5	М	♀ Auto-Pro Help		Gel-Pro Analyzerを
I	Winzip	GenExplore	Þ	Gel-Pro Analyzer Reporter		비해 국국
I	Windows Update	☐ ☐ Image-Pro Express 4.0	Ы	Gel-Pro Analyzer		起到しより
I	🙉 Netscape SmartUpdate	☐ Image=Pro Plus 3011		? Image Database Help		
I	🔁 Nextftp@	Twage-Pro Plus 40.1		Polosos Notos		
I	/ フレエール画の	umage=rro rius 4.00	1	M Release Notes	_	県东桂銀なまそ
I		📼 Image-Pro Plus 4.1	۲	🎖 Reporter Help		取利用報ど衣小し
I	🖶 ጋ՞ログラム(<u>P</u>) 🔹 🕨	🛱 Array-Pro Analyzer 4.0	۲			ます
I		Can .				

Windowsの「スタート」ボタンから「プログラム」 – 「Gel-Pro Analyzer 4.5」 – 「Gel-Pro Analyzer」の順にクリックすると Gel-Pro Analyzer が起動し、次ページ図のアプリケー ションウィンドウが開きます。

Gel-Pro Analyzer のアプリケーションウィンドウとツール

Gel-Pro Analyzerを起動すると、Gel-Pro Analyzer のアプリケーションウィンドウが開きます。アプリケーションウィンドウには、タイトルバー、メニューバー、ステータス バー、ツールバー、ツールパレットがあります。次ページの図は、Gel-Pro Analyzerの アプリケーションウィンドウが装備するツールと、他の機能を示しています。以下、この 章では、解析に必要な主な機能のみを紹介します。他のツールについては、「付録A その他のツール」(A-1ページ)をご参照下さい。

注記:本マニュアルでは、Windows 98の画面イラストを使って操作を解説しています。 Windows Me/NT4.0/2000/XPでは、画面表示や操作が若干異なることがあります。

▼ タイトルバー

タイトルバーは、プログラム名("Gel-Pro Analyzer")を表示します。画面上に画像ウィ ンドウが開いているときは、プログラム名の右隣に、現在アクティブになっている画像 ファイルの名前が表示されます。

タイトルバーには、このほかWindowsアプリケーションに共通な
(最大表示ボタン)、
(最小表示ボタン)、
(クローズボタン)の各ボタンもあります。Gel-Pro Analyzer
がアクティブになっているときは、タイトルバーが強調表示になります。

▼ メニューバー

アプリケーションウィンドウの上部にあるメニューバーには、Gel-Pro Analyzerのメニューが表示されます。

File Edit Acquire 1D-Gels Dot-Blots Tools Macro Window Help

メニューをクリックするとその下にコマンドの一覧が表示され、コマンドをクリックすることで画像処理・解析等を実行できます。メニュー内の各コマンドについて詳しくは、Help

(ヘルプ)メニューの Gel-Pro コマンドで表示されるオンラインヘルプ(英文)をご覧下 さい。

▼ ツールバー

画面上部にあるツールバーには、Gel-Pro Analyzerの各コマンドをアイコンの形で表 すコマンドツールボタン(下図)が並んでいます。これらのボタンをクリックすると、メニ ューを開かずに、直接 Gel-Pro Analyzerのコマンドを実行することができます。

/ 2 🖬 ☜ ◇ 夕 🕒 그 聪 □ ○ ଓ ∥ ۹ ৩ 🕅 🖽 ₦ 💷 🖩 📰 🕮 ⑧ જ 🖾 🕰 🖉

解析で使用する主なコマンドツールボタンの機能は、以下の通りです。他のコマンド ツールについては、「付録A その他のツール」(A-3 ページ)をご参照下さい。

• AOI (対象領域: Area of Interest)ツール:

「AOI」ツールは、画像処理・計測の対象を画像内の特定領域のみに限定するときに使用します。例えば、画像にノイズが多く、Gel-Pro Analyzer のレーン・バンド自動検出機能が正しく動作しない時は、予め画像内の測定対象領域のみをAOIで囲んでから自動検出を実行する必要があります。

作成するAOIの形状によっていくつかのAOIツールがありますが、Gel-Pro Analyzer の解析で使用する主な「AOI」ツールは、NEW AOI (新規AOI)ツールと 矩形AOI ツールです。他の「AOI」ツールについては、「付録A その他のツール」 の「AOIに関する解説」(A-8 ページ)を参照して下さい。

- 脳
 「NEW AOI」(新規AOI)ボタン:画像内に既にAOIがあればそれを解除 し、新規AOIの作成用カーソルを表示します。例えば画像内にはすでにア クティブな矩形AOIが存在しているが、それを捨てて別の矩形AOIを作成し たい、という場合にこのボタンをクリックします。クリックすると古いAOIが画 面からクリアされ、矩形AOI作成用カーソルが表示されて、新規のAOIを作 成できるようになります。
- □ 「矩形AOI」ボタン:このツールを使用すると、画像内に矩形、つまり四角 形のAOIを新規作成したり、既に画像内に存在している矩形AOIをアクティ ブにすることができます。使用するには、このボタンをクリックして選択して 下さい。選択中は、ボタンがアクティブになります。

このツールは、画像内に既に矩形AOIが存在している場合といない場合とで、動作の仕方が変わります。

- 画像内に既に矩形AOIが存在している場合は、</u>矩形AOIボタンを選択すると、そのAOIがアクティブになります(そのAOIが画像内に現れます)。新規の矩形AOIを作成したいときは、矩形AOIボタンを選択した後、NEW AOI (新規AOI)ボタン(闘)をクリックして下さい。これで現在のAOIが削除され、矩形AOI作成用カーソル(『)が表示されて新規のAOIを作成できるようになります。
- <u>画像内に矩形AOIが存在していない場合は、</u>矩形AOI作成用カーソル (『)が表示されます。このカーソルを、AOIで囲みたい領域の左上に 置き、領域の右下までドラッグしてから、マウスボタンを離します。

囲みたい領域の左上にカーソルを置きます

注記: [Shift]キーを押しながらドラッグすると、正方形の矩形AOIができます。

作成した矩形が、AOIとなって画像中に現れます。矩形AOIが画像内でアク ティブになっているときは、その大きさと位置を変更できます。 AOIの大きさを変えるには、カーソルをAOIの端ないしコーナーに置き、二 方向カーソルが表示されたらドラッグして下さい。AOI全体を移動するに は、カーソルを矩形AOIの中央に置き、四方向カーソルが表示されたらドラ ッグして下さい。

ズームツール・パンツール:

ズームツールとパンツールは、画像の表示を拡大・縮小したり、全体を画面に表示しきれない、大きい画像をスクロールするときに使用します。

- 「ズームツール」ボタン:ズームツールは、ウィンドウ内の画像表示を拡 大、縮小するのに使用します。
 - ・ 画像の表示サイズを拡大する:ズームツールをクリックして選択し、 カーソルを画像内に入れます(カーソルが虫メガネ形になります)。左 マウスボタンをクリックすると拡大します。最大で1600%まで拡大でき ます。
 - 画像の表示サイズを縮小する:ズームツールをクリックして選択し、 [Shift]キーを押しながら画像内を左マウスボタンをクリックすると、縮小します。クリックする毎に画像の表示サイズが1/2になります。画像が元のサイズの10%になるまで縮小できます。

注記:

- 拡大・縮小は、画像を右マウスボタンでクリックすると表示されるポッ プアップメニューのズームコマンドでも行なえます。このコマンドを使用 すると、拡大、縮小および特定倍率へのズームが可能です。
- 特定の解析ツールが動作している時は、ズームツールを使用できないことがあります。
- ズームツールは、解像度に関して画像の実サイズを変更するものではありません。単に画像の表示サイズを拡大、縮小するだけです。
 画像の解像度を変えて、画像の実サイズを変更するときは Edit(編集)メニューの Resize (サイズ変更)コマンドを使用します。詳しくは、

オンラインヘルプの「キーワード」から Resize (サイズ変更)コマンドの 項を開いてご参照下さい。

- 「パンツール」ボタン:パンツールは、画像ウィンドウ内に収まりきらない 画像をスクロールするもので、スクロールバーと似た機能です。 パンツールボタンをクリックするとカーソルが手の形に変わりますので、画 像をたぐりよせるようにドラッグして下さい。ドラッグした方向にスクロールし ます。
- コントラスト強調ツール・BCGつまみ:

ます。

以下のツールは、画像内に写っている解析対象物(レーン、バンド、ドットやコロ ニーなど)と背景とのコントラストを強調し、計測・解析を容易にするためのもので す。以下のツールを呼び出すには、画面上に画像が開いている状態で、コントラ スト強調ボタン(11)をクリックします[あるいは Edit (編集)メニューの Contrast Enhancement (コントラスト強調)コマンドを実行します]。

「コントラスト強調」ボタン: このボタンは、BCGつまみとコントラスト強調ツールを表示します。

「BCGつまみ」: このつまみを使うと、現在アクティブな画像の輝 <u>۵0</u>۵ 度値、コントラスト値、ガンマ補正値を簡単に調節できます。 BCGつまみ(スライダ) THE T スケール上のつまみ(スライダ)を上へ動かすと設定値が増加し、 下へ動かすと減少します。 50 50 1.0 Apply 注記: BCGつまみを動かすと画像が変化しますが、これは画像の Invert 表示をルックアップテーブル(ピクセル値を変換するテーブル)で変 化させているだけで、画像内の各ピクセルが持つ値は変更されま <u>R</u>eset せん。BCGつまみの設定を画像のピクセル値に反映したいとき More > は、つまみの下にある Apply (適用)ボタン(下記参照)をクリックし

💢 「輝度つまみ」(B: Brightness):画像内の全体的な光量を変更します。

- 「コントラストつまみ」(C: Contrast):画像内の「最も明るい部分」対「最 も暗い部分」のコントラストを変更します。

■■■■「色成分選択」ボタン:カラー画像のコントラストをBCGつまみで調整するときに、色成分(カラーチャンネル)を選択するボタンです。左から順に輝度、R(赤)、G(緑)、B(青)の各チャンネルを選択します。 BCGつまみで調整を行なう前に、あらかじめいずれかのボタンをクリックして、調整する色成分を指定します。

注記:色成分選択ボタンはグレイスケール画像では使用できません。グレイスケール画像で調節できるのは輝度のみです。

- <u>Apply</u>
 「適用」ボタン: BCGつまみで画質改善を行なった後でこのボタンを クリックすると、その設定を実際に画像内のピクセル値に反映します。 画質を改善した状態で画像の印刷・保存を行なう時に使います。
- 「反転」ボタン: 画像の反転を行なうボタンです。 グレイスケール画像の場合は白黒が反転し、カラー画像の場合は反対色の表示になります。 このボタンの機能は Edit (編集)メニューの Invert Contrast (コントラストを反転する)コマンドと同じです。
- Reset 「リセット」ボタン: BCGつまみで行なった調整をリセットします。この ボタンの機能は Edit (編集)メニューの Reset Contrast (コントラスト をリセットする)コマンドと同じです。

注記:一旦 Apply (適用)ボタンで画像に書き込んだ設定値をリセット するには、書き込んだ直後に Edit (編集)メニューの Undo (アンド ゥ)コマンドを使用して下さい。

More >

More> (詳細設定)ボタン:このボタンをクリックすると、BCGつま みの右側に Contrast Enhancement (コントラスト強調)ダイアログボ ックスが表示され、カラーマップを使用してコントラストを細かく調整す ることができます。

このボタンの機能は Edit (編集)メ ニューの Contrast Enhancement (コントラスト強調) コマンドと同じで す。

詳細は、オンラインヘルプの「キー ワード」から Contrast Enhancement (コントラスト強調) コマンドの 項を開いてご覧下さい。

注記: Contrast Enhancement ダイアログボックスが開いている間、 More>(詳細設定)ボタンは 〈Less (簡易設定)ボタンに変わってい ます(上図)。〈Less ボタンをクリックすると、Contrast Enhancement ダイアログボックスが元の大きさに戻ります。

- 「最適合わせ込み」ボタン: 画像のコントラストを自動的に最適化しま す。詳しくは、オンラインヘルプの「キーワード」から Best Contrast(コントラ スト最適化)の項を開いてご覧下さい。
- ↓ 「コントラストをリセット」ボタン:コントラスト設定をリセットして、画像を 元の状態に戻します。詳しくは、オンラインヘルプの「キーワード」から Reset Contrast (コントラストをリセットする)の項を開いてご覧下さい。

▼ ステータスバー

画面下部にあるステータスバーには、画面に表示中の画像、カーソルの位置とピクセルの値、処理の進行状況等の各種情報が表示されます。詳細は「付録A その他の ツール」の「ステータスバー」の項(A-6ページ)を参照して下さい。

묘뭪	Gray Scale 8(276,224 bytes), Zoom:1009	6 437, 118	126 1	60,4:261,78 W	/,H: 102,75	Gray Level	Pixels (Spatia	Cal 3)	1GB	7
	画像情報/操作ヘルプ	カーソル位置	/輝度	画像	サイズ	` 較⊒	Eデータ	空き	×Ξ	J

▼ 画像ウィンドウ

画像は、アプリケーションエリア内にある画像ウィンドウに表示されます。画像ウィンドウには、画像ファイルが入っています。通常の場合、Gel-Pro Analyzer が処理を実行する対象となるのは、アクティブな画像ウィンドウのみです。

アクティブなウィンドウは、アプリケーションエリア内で一番上に表示され、タイトルバー が強調表示されています。アクティブでないウィンドウをアクティブにするには、そのウ ィンドウにカーソルを当ててマウスボタンをクリックします。

画像ウィンドウには、このほかにも最大表示ボタン(□)、最小表示ボタン(-)、クローズボタン(-)、および専用のコントロールメニューと右マウスクリックで表示されるコンテキストメニューがあります。

画像ウィンドウのコントロールメニュー:

画像ウィンドウの左上にあるアイコンを1回クリック するとコントロールメニューが表示され、ウィンドウ を最大・最小表示する、ウィンドウを閉じる、ウィンド ウを切り替える等の操作を行なうコマンドが表示さ れます。

- 画像ウィンドウのコンテキストメニュー:
 マウスカーソルを画像内の任意の位置に置いた状態で右マウスボタンをクリック すると、Gel-Pro Analyzer 固有のコマンドを含むメニューが表示されます。
 このメニューのコマンド(右図)は、現在アクティブな画 像の拡大・縮小、および画像についての情報の表示に 使用します。
 - Zoom In (拡大):このコマンドは、ウィンドウ内の画像の表示を現在の2倍 に拡大します。
 - Zoom Out (縮小):このコマンドは、ウィンドウ内の画像の表示を現在の 1/2に縮小します。
 - Zoom (ズーム):このコマンド をクリックすると右隣にサブメニ ューが現れ、10%~1600%の固 定倍率を表示します。その中か ら表示倍率を選択して下さい (右図)。

50

🖌 🗶

 Information (情報): 画像についての情報を表示します。このコマンドの 機能は、Edit (編集)メニューの Info (画像情報)コマンドと同じです。詳しく は、オンラインヘルプの「キーワード」から Info (画像情報)の項をご参照下 さい。

▼ ダイアログボックスのチェックボタン

Gel-Pro Analyzer のコマンドを実行した時に表示されるダイアログボックスには、タイプ入力された数値・文字をチェックする機能を持つものがあります。

ダイアログボックスに値を入力すると、入力欄の右側に、右図のよ うな2つのボタンが現れることがあります。

 チェックボタン(
):このボタンをクリックすると、入力された値が適正値かどう かリミットチェックを行ないます。入力された値が適正値のときは、このボタンが消 えます。入力された値が適正範囲にないときは、ボタンが消えずに残りますので、 値を訂正して下さい。

注記:チェックボタンをクリックする代わりに、[Enter] キーを押してもリミットチェッ クを行ないます。

リセットボタン(*):このボタンをクリックすると、入力欄に入力された値を消して、元の値にリセットします。新しい値を入力し直すときに使用します。

▼ ツールパレット

Gel-Pro Analyzer では、画像の解析に専用のツール群を使用しますが、1次元電気泳動ゲル解析とドットブロット解析のツールは、専用のツールパレットとして画面に表示されます。

ツールパレットには、各ツールを起動するボタンが並んでおり、ボタンを上から下へ順 にクリックすることで、解析を実行できるようになっています。

1D-Gel ツールパレット(1次元電気泳動ゲル解析用):

🗄 🕅 1D-Gel 🛛 🗙	
Rotate	【傾き補正】 画像を回転し、傾きを補正します (P. 2-6)
Lanes -	- 【レーン検出】レーンとバンドを検出します (P. 2-8)
Well Origin	【ウェル位置補正】 各ウェルの位置を個別指定します (P. 2-12)
Bands -	-【バンド検出】 バンドを検出します (P. 2-11)
Background	【バックグラウンド補正】 バックグラウンドを減算します (P. 2-30)
M.W. Standard	【分子量スタンダード】 スタンダードを定義して適用します (P. 2-16)
Slant	【スマイリング補正】スマイリングの補正に使用します (P. 2-20)
Results -	【測定結果】 測定結果の一覧を表示します (P. 2-23)
Preference Views	- 【表示の初期設定】 ラベルなどの表示を設定します (P. 2-54)
Reports -	【レポート】 測定結果のレポートを作成します (P. 2-61)
Save -	【保存】保存します (P. 2-63)

1次元ゲル解析に使用するツールパレットです。このツールパレットは、以下の場合に表示されます。

- File (ファイル) メニューの Experiment (実験) コマンドを実行し、Function Type (解析のタイプ)欄でDNA analysis (DNA解析)、RNA analysis (RNA解 析)、Protein analysis (蛋白質解析)、Single band analysis (単一バンド解 析)のいずれかを選択した時
- 1D-Gels メニューの Show ToolBar (ツールバーを表示する) コマンドを実行 した時

1D-Gel ツールパレットの使用法について詳しくは、本書の第2章「1次元ゲルの解析」をご参照下さい。

• Dot Blots ツールパレット(ドットブロット解析用):

🖃 Dot Blots 🗙	
Rotate	-【傾き補正】 画像を回転させ、傾きを補正します (P. 3-5)
Dots -	-【ドット検出】 画像内のドットを検出します (P. 3-7)
Calibrate -	- 【較正】 (アンドの質量を較正します (P. 3-15)
Mass / IOD	ー【質量/IOD】
Save -	【保存】保存します (P. 3-26)

ドットブロット解析に使用するツールパレットです。このツールパレットは、以下の 場合に表示されます。

- File (ファイル) メニューの Experiment (実験) コマンドを実行し、Function Type (解析のタイプ)欄で Dot blot analysis (ドットブロット解析) を選択した時
- Dot-Blots メニューの Show ToolBar (ツールバーを表示する) コマンドを実行 した時

Dot Blots ツールパレットの使用法について詳しくは、本書の第3章「ドットブロットの解析」をご参照下さい。

注記: コロニーカウンティングと濃度測定では、上記のようなツールパレットの代わり に測定用のウィンドウが表示されます。

Gel-Pro Analyzer を終了する

Gel-Pro Analyzer を終了するには、File (ファイル) メニューから Exit (終了) コマンドを 実行します。

>>> 次のステップとして、第2章「1次元ゲルの解析」へ進みましょう。

第2章 1次元ゲルの解析

測定内容

Gel-Pro Analyzer は、1次元電気泳動ゲル画像について、以下のデータを測定できます。

- 各バンドの分子量 (molecular weight, M.W.)
- 各バンドの質量 (amount)
- バンドの積分光学濃度 (integrated optical density, IOD)
- バンドの相対量 (relative abundance, Rel. ab.)

本章では、Gel-Pro Analyzer の操作練習として、製品に付属のサンプル画像を使用し、以上のそれぞれについて測定します。

解析画像の要件

以下の練習では、解析画像の例としてサンプル画像の"Prot1.tif"を使用しますが、一般に Gel-Pro Analyzer で測定する1次元電気泳動ゲル画像は、以下の要件を満たしている必要があります。

 グレイスケール画像 [8/12/16ビットグレイスケール形式、ないしFloating Point (浮動小数点)形式]であること。

解析画像がカラー画像の場合は、測定を行なう前に、あらかじめ Edit (編集)メ ニューの Convert To (変換) コマンドにてグレイスケール画像(Gray Scale 8/12/16 ないし Floating Point)に変換するか、あるいは Color Channel (色成 分)コマンドの Extract (抽出)を使用して、測定対象のチャンネル(R, G, Bのい ずれか)をグレイスケール画像として抽出する必要があります。

較正(calibration)の基準が存在すること。

分子量の測定では、画像内に最低1本の分子量マーカのレーン(基準レーン)が 写っている必要があります。

質量の測定では、各ウェルにアプライした遺伝物質の量が既知であること、また は画像内に写っている複数のバンド(基準バンド)の質量が既知である必要があ ります。

 1次元電気泳動ゲル画像の場合、ウェルが画像の上辺側にある必要があります (ウェル自体が写っている必要はありません)。画像内のレーンが傾いていたり、 ウェルが左右の辺ないし下辺にある場合は、1D-Gel ツールパレットの Rotate (傾き補正)ボタンで画像の向きを修正できます。

操作の概要

この練習での操作の概要は以下の通りです。

- Gel-Pro Analyzer を起動し、Experiment (実験) ダイアログで基本設定を行なう (2-3ページ)
- 画像を開く(2-5ページ)
- 画像の前処理を行なう(2-6ページ)
- 測定領域を限定する(レーンとバンドを検出する)(2-7ページ)
- 分子量を測定する(2-15ページ)
- 質量を測定する(2-27ページ)
- 積分光学濃度(IOD)を測定する(2-42ページ)
- 相対量を算出する(2-43ページ)
- レーンプロファイルを操作する(2-46ページ)
- 表示オプションを使用する(2-50ページ)
- 測定結果を外部へ出力する(2-57ページ)
- データベースを使用する(2-63ページ)

この操作の大部分は、画面に表示される 1D-Gel ツールパレット(下図)のボタンを、上から下へ順にクリックすることで実行できます。

🗄 1D-Gel 🛛 🗙	
Rotate	【傾き補正】 画像を回転し、傾きを補正します (P. 2-6)
Lanes -	【レーン検出】 レーンとバンドを検出します (P. 2-8)
Well Origin -	【ウェル位置補正】 各ウェルの位置を個別指定します (P. 2-12)
Bands -	【バンド検出】
Background -	【バックグラウンド補正】 バックグラウンドを減算します (P. 2-30)
M.W. Standard	【分子量スタンダード】 スタンダードを定義して適用します (P. 2-16)
Slant -	【スマイリング補正】 スマイリングの補正に使用します (P. 2-20)
Results -	【測定結果】
Preference Views -	【表示の初期設定】 ラベルなどの表示を設定します (P. 2-54)
Reports -	【レポート】 測定結果のレポートを作成します (P. 2-61)
Save -	【保存】保存します (P. 2-63)

ツールパレットは、Experiment (実験) ダイアログボックスで選択した Function Type (解析のタイプ) によって切り替わります(詳細は下記の2-4をご参照下さい)。

この練習には、約1時間かかります。

2.1 実験データの入力

まず最初の操作として、実験データを入力する必要があります。操作手順は以下のようになります。

▼操作-実験データの入力:

Gel-Pro Analyzer をまだ起動していない場合は、Windows の「スタート」メニューの「プログラム」にある「Gel-Pro Analyzer 4.5」の「Gel-Pro Analyzer」をクリックして、Gel-Pro Analyzer を起動します。Gel-Pro Analyzer のアプリケーションウィンドウがアクティブになったら、以下の操作を開始できます。

Gel-Pro Analyzer が起動 すると、通常は Experiment (実験) ダイアログボ ックスが自動的に開きま す(右図)。

Experimentダイアログ ボックス(ここに実験 データを入力します)

Experiment		×
Experiment ID:		OK
Create Date/T	me: 2001-07-06 15:16:50	
Modified Date/	Time: 2001-07-06 15:16:50	New
Title:		Open
Experimenter:		Save
Function Type	DNA analysis	Defete
Description:	×	Options
		🔽 Show this
	7	dialog at start-up
	T E	
Image Status:	<no attached="" image=""></no>	
C Archive all	open images into database.	

注記: Gel-Pro Analyzer の起動時に Experiment ダイアログボックスが開かない ときは、File (ファイル) メニューの Experiment コマンドを実行して開いて下さい。

Experiment ダイアログボックスで、測定の内容に合わせて基本設定を行ない、 同時に実験データを入力する必要があります。

Title (タイトル) 欄に、実験のタイトルを半角英数文字で入力します。ここでは、例として"DNA Test 01"と入力します。

注記: Gel-Pro Analyzer では、原則として日本語の文字を使用できません。半角 英数文字のみをご使用下さい。

	Experiment Experiment ID:	X OK	1
	Create Date/Time: 2001-07-06 15:16:50 Modified Date/Time: 2001-07-06 15:16:50)) New	
	Title: DNA Test 01	Open	
必要なデータを	Experimenter: Tanaka	Save	
キ角央剱乂子で	Function Type: DNA analysis	T Delete	―― 解析のタイプ
入力しまり	Description: Training	Options Options dialog at start-up	(ここではDNA 解析)を選択 します(必須)
	Image Status: <no attached="" image=""></no>		
	\square Archive all open images into database.		

- Experimenter (実験者) 欄に、実験者の名前を入力します。上図では、例として "Tanaka"と入力しています。
- Function Type (解析のタイプ) 欄で、DNA analysis (DNA解析)を選択します。
 注記: Function Typeの指定は、必ず行なう必要があります(下記を参照)。
- 5. Description (説明) 欄に、"Training"と入力します。
- 6. OK ボタンをクリックして Experiment ダイアログボックスを閉じます。

これで実験データの入力は完了です。

>>> 次のステップ「2.2 画像を開く/画像の前処理」へ進んで下さい。 以下は、ご参考用の詳細情報です。

【参考】実験データについて

■ Function Type (解析のタイプ):

Experiment ダイアログボックスの Function Type (解析のタイプ)は、Gel-Pro Analyzer の基本的な動作を決定する重要な設定です。解析内容に合わせて Function Type を設定することにより、測定に使用する解析ツールや、測定デー タの単位などが自動的に選択されます。測定を開始する前に、ここで必ず正しい Function Type を指定しておく必要があります。

Function Type 欄で選択できるのは、以下の設定値です。

- Add User Defined Type この項目を選択すると、ユーザ定義の新規
 Function Type を作成できます
- DNA analysisDNA 解析を行ないます
- RNA analysisRNA 解析を行ないます
- Protein analysis蛋白質の解析を行ないます
- Single band analysisシングルバンド解析を行ないます
- Dot blot analysisドットブロット解析を行ないます
- Colony countingコロニーカウントを行ないます
- Area density......指定領域について濃度測定を行ないます

■ その他の実験データ:

Experiment ダイアログボックスの Title、Experimenter、Description の各欄に入 カした値(実験データ)は、1D-Gel ツールパレットの Save (保存) ボタンにより、こ のままデータベース(2-63ページを参照)に登録され、データベースから実験デー タを検索する時に使用できます。 Experiment ダイアログボックスは、File (ファイル) メニューの Experiment コマン ドを実行することで、Gel-Pro Analyzer の操作中にいつでも呼び出すことがで き、実験データを入力・編集できます。

2.2 画像を開く/画像の前処理

次のステップとして、解析対象となる画像ファイルを Gel-Pro Analyzer 上に開き、必要 に応じて前処理を行ないます。この操作の概要は以下の通りです。

画像を開く:

解析画像は、予め保存した画像ファイルから開いたり、スキャナ(B-1ページを参照)、カメラなどの画像取り込みデバイスから取り込んで開くことが可能です。

画像の前処理:

画像の前処理とは、測定に先立って、測定目的のために画像を最適化する処理 です。Gel-Pro Analyzer の1次元ゲル解析では、ゲルのウェルが画像の上辺に 写っている必要があります。このため、ゲルが傾いていたり、ウェルが画像の左 右や下に写っているときは、画像の傾きを補正する必要があります。

この他、必要に応じて、画質の改善(下記の7.)、画像の較正などの処理を行なうこともあります。

▼操作ー画像を開く/画像の前処理:

〈画像を開く〉

- 1. File メニューの Open (開く) コマンドを実行して、Open File (ファイルを開く) ダイ アログボックスを開きます。
- 2. Gel-Pro Analyzer のアプリケーションフォルダの中にある"Images"フォルダ(通常 は"C:¥Gelpro45¥Images")を開きます。
- 3. 「Slant.tif"ファイルを選択し、「開く」ボタンをクリックして、解析画像"Slant.tif"を開きます。

このサンプル画像"Slant.tif"では、ウェルが上辺の側にあり、かつレーンにも傾 きがないので、前処理(画像の傾きの補正)を行なう必要はありません。もし画像 の傾きの補正を行なう必要がある時は、以下の4.~6.のような手順になります。

<画像の前処理: 傾きを補正する>

 (任意、画像の傾きを補正する場合のみ) 1D-Gel ツールパレットの Rotate (傾き 補正) ボタンをクリックします。

画像上にグリッドが重ね表示され、同時に Rotate ダイアログボックスが表示されます。

5. (任意、画像の傾きを補正する場合のみ) Align grid with the lanes, arrows pointing toward the wells (矢印をウェルの方向へ向けて、グリッドをレーンと平行 にする)オプションが選択されていることを確認し、画像内をドラッグしてグリッド の向きをレーンと平行にします。その際、グリッドの矢印(↑↑↑)がウェルの方 向を向くようにして下さい。

画像内をドラッグし て、矢印(↑ ↑ ↑)が 画像の上辺(ウェル 側)を向くようにします

6. (任意、画像の傾きを補正する場合のみ) Close Original Image (処理後に元の画像を閉じる) オプションが選択されていることを確認して、 OKボタンをクリックします。

これで、傾きを補正した新規画像が作成され、同時に元の画像は閉じます。

以降の処理と測定は、全てこの新規画像("Untitled..."という名前になります)に対して行なわれます。

注記: この新規画像は、この時点ではまだ保存されていません。測定終了後に 1D-Gel ツールパレットの Save (保存) ボタンで実験データを保存しようとする と、画像を保存するように促すダイアログボックスが表示されます。

次に、、画像内のシグナルを鮮明化するために、画像のルックアップテーブル (LUT)を最適化します。

<画像の前処理:鮮明化>

 Gel-Pro Analyzer の画面上部にあるツールバーから、最適合わせ込みボタン をクリックします。

この操作により、画像内のレーンやバンドが鮮明に見えるようになります。

注記: この操作は、画像を鮮明化するために、画像の表示を変更しただけです。 画像データ自体は変更していません。詳しくは、1-6ページのルックアップテーブ ルの注記をご参照下さい。

>>> 次のステップ「2.3 測定領域の限定-レーン・バンドの検出」へ進ん で下さい。

2.3 測定領域の限定 - レーン・バンドの検出

次のステップとして、解析画像内の測定領域(定量を行なう対象領域)を限定する必要があります。この処理の概要は以下の通りです。

矩形AOI で、画像内の測定対象領域を囲む:

スミアのひどい画像では、画像内に矩形AOIを作成して、測定対象領域(レーン が写っている領域)のみを囲んでおくと、以降のレーン・バンドの抽出が容易にな ります(測定対象領域のみを予め囲んでおくことで、測定に含めたくないスミアの 部分が処理対象から除外され、レーンやバンドの自動検出の精度が向上しま す)。

• 定量するレーンとバンドの領域を検出する:

1D-Gel ツールパレットの Lanes ボタンで、画像内のレーンの範囲を検出します。 レーンを検出後、今度はそれぞれのレーンの範囲内でバンドの検出が行なわれ ます。 レーンとバンドの検出はほぼ自動で行なわれますが、手動での補正も可能で す。

上記の処理を行なう操作手順は、以下の通りです。

▼ 操作ーレーン・バンドの検出:

<測定対象を AOI で囲む>

 (任意) 画像のスミアがひどい場合は、測定対象のレーンのみを囲むように矩形 AOI を作成します。 画面上部の矩形 AOI ボタンをクリックして選択し、マウスで 画像内をドラッグして、測定したい領域のみを囲みます。

<レーンとバンドを自動検出>

2. 1D-Gel ツールパレットの Lanes (レーン検出) ボタンをクリックします。

	en 1D-Gel 🗙
	Rotate
クリックします ―	Lanes
	Well Origin
	Bands
	Background

画像内の各レーンが検出されて矩形のアウトラインで囲まれ、レーン内のバンド も検出されてバンドマーカ(+印)でマークされます。

検出されたレーンは、左から順に1、2、3、…と番号が振られ、色分けされた矩形のアウトラインで囲まれます。

同時に、レーンの検出方法を設定する Lanes ダイアログボックスと、Lane Profile (レーンプロファイル)ウィンドウが開きます。

<検出されなかったレーンを手動で追加>

ここで、検出されたレーンをよく見ると、3番目と4番目のレーンの間に、検出され ていないレーンが1本あることが分かります。

従って、ここで欠けているレーンを手動で追加します。

3. Lanes ダイアログボックスの Add Lanes (レーンを追加) ボタンをクリックします。

- Add Straight Lanes (直線のレーンを追加)ダイアログボックスが開いたら、 Adding straight lane (直線のレーンを追加する)オプションが選択されていること を確認し、画像ウィンドウの中にカーソルを入れます。 カーソルが四方向矢印の形になり、同時にレーンと同じ長さの矩形が表示されま
- 5. カーソルを3番目と4番目のレーンの間まで移動し、クリックします。

クリックすると、その位置にレーンのアウトラインが表示されますので、Add Straight Lanes ダイアログボックスの OK ボタンをクリックします。

これで、3番目と4番目のレーンの間に新しいレーンが検出され、表示されます。 新しいレーン上のバンドは自動検出され、バンドマーカ(+印)でマークされます。

<不要なバンドマーカを除去>

す。

次に、検出されたレーンの中のバンドマーカ(+印)を調べると、12番目のレーン の上から2番目のバンドマーカが、実際のバンドではないことが分かります。

従って、このバンドマーカを除去する必要があります。除去する手順は以下の通りです。

6. バンドマーカを除去するには、1D-Gel ツールパレットの Bands (バンド検出) ボタ ンをクリックします。

Bands ダイアログボックスが開いたら、Delete Bands (バンドを削除) ボタンをクリ ックします(上図)。

 カーソルを画像ウィンドウに入れると、カーソルが十字形に変わりますので、12 番目のレーンの上から2番目のバンドマーカをクリックします。

クリックすると、バンドマーカが消えます。

注記: このとき、カーソルを解析画像のウィンドウに入れる代わりに Lane Profile ウィンドウに入れ、レーンプロファイル内のピークをクリックしてバンドマーカを消 すこともできます。

8. 最後に、Delete Bands ダイアログボックスの OK ボタンをクリックします。

これで、不要なバンドマーカが除去されました。

注記: バンドを削除するのではなく、新たに追加する時は、Bands ダイアログボ ックスの Add Bands (バンドを追加) ボタンを使用し、バンドを追加したい箇所を 十字形カーソルでクリックします。

以上の操作で、解析画像内のレーンとバンドが検出されました。この次のステップとして、分子量、積分光学濃度などの定量を行ないます。

>>> 次のステップ「2.4 定量」(2-15ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】レーン・バンドの検出 – その他のオプション:

■ 自動検出時にレーンの検出漏れが多いとき、検出感度を上げる:

画像内に予め矩形AOIを作成した場合、「この AOI の範囲内に…本のレーンを 強制的に検出せよ」という形で自動検出を行なうことができます。解析画像内の レーンの本数が既知であるときは、このオプションを使用されると便利です。

これを行なうには、まず画像内に矩形AOI を作成してから、1D-Gel ツールパレットの Lanes (レーン検出) ボタンをクリックして Lanes ダイアログボックスを開き、Look for (指定本数)オプションを選択し、その右の欄にレーンの本数を入力します。その後 Find Lanes (レーン検出実行) ボタンをクリックすると、矩形 AOI の範囲内で、Look for 欄に指定された本数のレーンを検出します。

■ バンドの自動検出の感度を指定する:

1D-Gel ツールパレットの Bands (バンド検出)ボタンで Bands ダイアログを表示 し、Min. band height (バンドピークの最小高さ)の数値を調節します。小さい値を 指定するとバンド検出の感度が高くなり、シグナルの弱いバンドでも検出します。 反対に大きい数値を指定すると、シグナルの強いバンドのみを検出します。

■「各レーンの中に、最大…本までのバンドを検出する」という形でバンドの検出感度を指定したい:

1D-Gel ツールパレットの Bands (バンド検出)ボタンをクリックし、Bands ダイア ログボックスで Options (オプション)ボタンをクリックすると、Bands Options (バン ドのオプション)ダイアログボックスが表示されます。このダイアログボックスにあ る Retain the largest (検出する本数)オプションを選択し、検出するバンドの最 大本数を Retain the largest の右の欄に入力し、OK をクリックします。Bands ダ イアログボックスの Find Bands (バンド検出実行)ボタンをクリックすると、シグナ ルの強いバンドから順に、指定した本数以下のバンドのみを検出します。

■ 各ウェルの位置を個別指定したい:

スマイリングなどが原因で、ウェルの位置(レーンの開始位置)がレーンごとに上下にずれている場合は、各ウェルの位置を個別指定できます。これを行なうには、ツールパレットの Well Origin (ウェル位置補正)ボタンをクリックしてDefine Well Origin (ウェル原点を指定)ダイアログを開きます。カーソルが十字形になりますので、画像上部のウェルの位置を順にクリックして「*」印を付けていきます。全ウェルの位置に「*」印が付いたら、OKボタンをクリックします。

- Always show Well Origin Line: このオプションを選択すると、ウェルの位置を 示す線が表示されます。
- Polynomial Fit Line: 各ウェルの位置を、多項式の曲線で結びます。
- Delete Line: ウェルの位置設定を解除したいときにクリックします。

■ 一旦検出したバンドの位置を変更する:

バンドマーカの位置は変更できません。バンドマーカの位置が不適切なときは、 ツールパレットの Bands ボタンをクリックし、Delete Bands (バンドを削除)ボタン でバンドを一旦除去した後、Add Bands (バンドを追加) ボタンで適切な位置に新 しいバンドを追加して下さい。

■ バンドのピークの範囲を調節する:

ピークの範囲を調節するには、Lane Profile ウィンドウのグラフ内で、バンドの谷 マーカ(下図)をドラッグします。バンドのピークの範囲は、谷マーカから谷マーカ までの間となります。

注記:谷マーカの形は、1D-Gel ツールパレットの Preference Views (表示の初 期設定)ボタンで変更できます(各カッコの他に、点線やハッチパターンの形に変 更できます)。詳しくは、2-56ページをご覧下さい。

■ 湾曲したレーンを正しく検出したい:

これを行なうには、1D-Gel ツールパレットの Lanes(レーン検出)ボタンをクリック して Lanes ダイアログボックスを開き、Force straight lanes (強制的に直線レー ンとして検出)オプションを非選択にしてから、Find Lanes ボタンでレーンの自動 検出を再実行します。

また、湾曲したレーンを自動検出で適切 に検出できないときは、手動でレーンのア ウトラインを湾曲させることもできます。こ れを行なうには、Lanes ダイアログボック スの Curve Lanes (レーンを湾曲) ボタン をクリックし、画像内に表示される垂直線 の節(ハンドル)をドラッグして湾曲させ、 Curve Lanes ダイアログボックスの OK ボ タンをクリックします。

■ 湾曲したバンドを正しく検出したい:

湾曲したバンドは、手動で検出させることができます。これを行なうには、ツール パレットの Bands ボタンをクリックして Bands ダイアログボックスを開き、Curve Bands (バンドを湾曲) ボタンをクリックします。Band Correction (バンドの補正) ダイアログボックスが開いたら、Add Curves (カーブを追加) ボタンをクリックし、 カーソルで画像内の湾曲したバンドをクリックします。最初にレーンの一番上に ある曲がったバンドをクリックし、次にレーンの一番下にあるバンドをクリックして から、最後にレーンの中央にあるバンドをクリックすると、最も効率よく作業でき ます。クリックされたバンドには節のある横線が表示されます。湾曲したバンドを 全てクリックしたら、Add Band Curve ダイアログボックスの OK ボタンをクリックし ます。横線は自動的にバンドの曲がり具合に合わせて湾曲しますので、必要に 応じて横線の節をドラッグして補正します(下図)。

最後に、Band Correction ダイアログボックス の Done (終了) ボタンをクリックします。

■ スマイリングを補正する:

スマイリング(バンドの垂直方向のずれ)補正の手順については、「2.4.1.2 スマイ リング補正」(2-20ページ)をご覧下さい。

■ レーンの位置と幅を変更する:

レーンの位置を変更するには、1D-Gel ツールパレットの Lanes ボタンをクリック して Lanes ダイアログボックスを開いた状態で、解析画像内のレーンのアウトラ イン(各レーンを囲む、色付きの矩形の枠)を直接ドラッグします。

- レーンの幅を個別に変更するには、1D-Gel ツールパレットの Lanes ボタン をクリックして Lanes ダイアログボックスを開き、Uniform Lane Width (レー ン幅を一律にする)オプションを非選択にしてから、画像内のレーンのアウ トラインの左右の辺をドラッグして幅を変更します。
- 全レーンの幅を一律に変更するには、Uniform Lane Width オプションを選 択してから、任意のレーンのアウトラインをドラッグするか、あるいは Lane Width (pixels) [レーン幅 (ピクセル単位)] 欄に幅を入力します。
- 画像の背景の領域がバンドとして認識され、バンドが背景として認識されてしまう場合の対処:

通常、このような問題は発生しませんが、万一発生した場合は、1D-Gel ツール パレットの Bands (バンド検出) ボタンで Bands ダイアログボックスを開き、画像 内のバンドと背景の関係に合わせて Dark bands, bright background (バンドが 白、背景が黒) オプションないし Bright bands, dark background (バンドが黒、背 景が白) オプションのいずれかを選択してから、Find Bands (バンド検出実行) ボ タンをクリックして再検出を行ないます。

2.4 定量

解析画像内の測定対象領域が限定され、レーンとバンドが検出されたら、次のステップとして、検出されたバンドの定量を行ないます。

Gel-Pro Analyzer では、測定する対象や較正の方法によって、次の定量が可能です。

• 分子量(molecular weight)の測定 (本ページ):

解析画像内に写っている分子量マーカのレーンを基準として較正を行ない、バン ドの泳動量からバンドの分子量を求めます。

- ・ 質量(amount)の測定 (2-27ページ):

 各レーンへのアプライ量、または解析画像内のバンドの既知の質量に基づいて
 較正を行ない、バンドの質量(マス)を求めます。
- 積分光学濃度(IOD)の測定 (2-42ページ):
- 相対量の算出 (2-43ページ):

上記の測定を行なう操作手順は、以下の通りです。

2.4.1 分子量 (Molecular Weight)の測定

各バンドの分子量の測定は、バンドの泳動量を基準に行ないます。この測定を行なう には、以下の要件を満たす必要があります。

• 各レーンのウェルが、解析画像の上辺側にあること:

Gel-Pro Analyzer は、バンドが画像の上から下へ向かって泳動したものとして泳動量を算出します。従って、ウェルが画像の上方にある必要があります。もし上方にない場合は、1D-Gel ツールパレットの Rotate (傾き補正)ボタンで補正できます(2-6ページをご参照下さい)。

ここで練習に使用しているサンプル画像 "Slant.tif" では、ウェルが画像の上方にあるので、傾きを補正する必要はありません。

• 解析画像内に少なくとも1本の分子量マーカ(基準レーン)が写っていること:

画像内に写っている分子量マーカが、分子量の較正の基準となります。ここで練習に使用している画像 "Slant.tif"では、左右両端にある2本のレーン(1番と12番のレーン)が分子量マーカ (Lambda DNA/Hind III Fragments)です。

このほか、スマイリングのひどい画像では、等分子量の横列のバンド同士を結びつける「スマイリング補正」(2-20ページ)を行なう必要もあります。

以下の手順で、画像内の各バンドの分子量を測定します。

注記:分子量でなく、質量(amount)、積分光学濃度(IOD)、ないし相対量のみを測定したい場合は、ここから直接以下のページへ進んでも構いません。

- 「2.4.2 質量 (Amount)の測定」(2-27ページ)
- 「2.4.3 積分光学濃度 (IOD) の測定」(2-42ページ)
- 「2.4.4 相対量の算出」(2-43ページ)

2.4.1.1 分子量スタンダードによる較正

上記のように、分子量の測定には、解析画像内に基準レーン(分子量マーカ)が写って いる必要があります。分子量マーカに基づく較正の手順は、以下の通りです。

 Select/Unsel (マーカ選択/非選択) ボタンをクリックします。Standard Lanes (ス タンダードのレーン) ダイアログボックスが開きます。

Automatic slant correction

 Slant.tif"画像内にカーソルを入れ、1番目のレーンのアウトライン内にカーソル を置きます。カーソルが十字形になったら、クリックします。 Gel-Pro Analyzer スタートアップマニュアル ー【1次元ゲルの解析】

これで1番目のレーンの上にあるレーン番号が水色になり、分子量マーカとして 選択されたことを示します。

5. 同様に、12番目のレーンのアウトライン内をクリックして、選択します。

12番のレーンも水色のレーン番号が付き、Select/Unsel ボタンの右側の欄に "Lane 1"、"Lane 12"と表示されます(下図)。

<分子量スタンダードの選択>

次に、上で選択した分子量マーカのレーンに、分子量スタンダードの値を適用し て較正を行ないます。

6. Molecular Weight Standard ダイアログボックスのMolecular Weight Standard /Rt. 欄をクリックして、Lambda DNA/Hind III Fragments を選択します。

画像内の1番目と12番目のレーンのバンドに、分子量スタンダードのマーカ(水 色)が付きます。

注記: 分子量スタンダードのマーカは、自動的にバンド上に位置決めされます。 自動位置決め時の感度を指定したい時や、手動で位置決めしたい時は、下記の 「分子量スタンダード – その他のオプション」をご覧下さい。

7. Molecular Weight Standard ダイアログボックスの OK ボタンをクリックして閉じます。

上記の操作により、分子量マーカのレーン(1番と12番)にLambda DNA/Hind III Fragments の分子量スタンダードが適用され、それに基づいて他の全てのバンドの分子量が較正・算出されました。

>>> 次のステップ「2.4.1.2 スマイリング補正(Slant)」(2-20ページ)へ進ん で下さい。

以下は、ご参考用の詳細情報です。

【参考】分子量スタンダード – その他のオプション:

■ 分子量スタンダードを新規作成する:

スタンダードを新規作成するには、Molecular Weight Standard ダイアログボック スの New (新規作成)ボタンをクリックして Create New Molecular Weight Standard (分子量スタンダードの新規作成)ダイアログボックスを開き、以下を行 ないます。

- 1. Name (名前)欄に新規スタンダードの名前を半角英数文字で入力します。
- 2. Unit (単位)欄で単位を選択します。bp, Kb, kDa, pl のいずれかを選べます。
- Genetic Material (遺伝物質)欄で遺伝物質の種類を選択します。DNA, RNA, Protein のいずれかを選べます。
- Molecul. Weight 欄にバンドの分子量を1つずつ入力し、入力する度に Add (追加)ボタンをクリックします。

入力した値を削除するときは Delete (削除) ボタンを、変更するときは Change (変更) ボタンを使用します。

5. バンドを分子量を入力し終わったら、OK ボタンをクリックします。

以上の操作により新規スタンダードが登録され、Molecular Weight Standard ダイ アログボックスの Molecular Weight Standard /Rt. 欄に表示されます。

■ 既存の分子量スタンダードの値を変更する:

変更するには、変更したいスタンダード名を Molecular Weight Standard ダイアロ グボックスの Molecular Weight Standard /Rt. 欄で選択し、Edit (編集) ボタンを クリックします。Edit Molecular Weight Standard ダイアログボックスが開いたら、 各欄の値を変更できます。バンドの分子量の値を変更するには、変更したい値を Molecular Weights 欄で選択してから、Molecul. Weight 欄に新しい数値を入力 し、Change (変更) ボタンをクリックして変更します。変更が全て終了したら、OK ボタンをクリックします。

■ 分子量スタンダードのマーカを自動位置決めする感度を調節する:

各バンドの上に表示される分子量スタンダードのマーカ(水色)は、分子量スタン ダードを選択すると同時に自動で位置決めされますが、この時の合わせ込みの 度合いを変更できます。変更するには、Molecular Weight Standard ダイアログボ ックスの Options (オプション) ボタンをクリックして M. W. Standard Options (分子 量スタンダードのオプション)ダイアログボックスを開きます。このダイアログで、 以下のオプションを選択できます。

- Manual positioning only (手動位置決めのみ): このオプションを選択すると、
 Molecular Weight Standard ダイアログボックスで分子量スタンダードを選択した時に、マーカは自動的に位置決めされません。
- Match band for band (1本ずつ合わせる): 自動合わせ込み時に、上(ウェル 側)のバンドから順に、1本ずつバンドとスタンダードのマーカを合わせます。
 通常はこの設定にしておきます。
- Allow one missing band (欠けたバンド1本まで許容する): 自動合わせ込み 時に、欠けたバンド (スタンダードの値に合わないバンド)を1本まで許容し ます。この設定を選択した場合、スタンダードの値に合わないバンドが1本 以下であれば、そのバンドを飛び越して次のバンドにマーカを付けます。
- Allow two missing bands (欠けたバンド2本まで許容する): 自動合わせ込み
 時に、欠けたバンド (スタンダードの値に合わないバンド) を2本まで許容し
 ます。この設定を選択した場合、スタンダードの値に合わないバンドが2本
 以下であれば、そのバンドを飛び越して次のバンドにマーカを付けます。
- Standard band finding sensitivity (スタンダードのバンドの検出感度):分子 量スタンダードの検出感度を指定します。分子量マーカのバンドが、他の レーンのバンドよりもシグナルが弱いときは、この欄の値を増やします。反 対に、マーカのシグナルが他のバンドのシグナルよりも強いときは、この欄 の値を減らして下さい。

上記のオプションを設定した後、OK ボタンをクリックし、 Molecular Weight Standard ダイアログボックスの Auto Loc. (自動位置決め)ボタンをクリックする と、オプションの設定に基づいて自動位置決めを行ないます。
■ 分子量スタンダードのマーカを手動で位置決めする:

手動でマーカを位置合わせしたい場合は、以下のように操作します。

- Molecular Weight Standard ダイアログボックスの下部にある Locate (位置 決め) ボタンをクリックします。Position Molecular Weight Standard (分子量 スタンダードを位置決めする) ダイアログボックスが開きます。
- 2. 各バンドの上に表示されている、水色の分子量スタンダードのマーカをマウ スでドラッグします。
- 3. マーカを正しい位置まで動かしたら、マーカを一度クリックして、マーカの右 に表示されている数値(分子量の値)に四角囲みが付くようにします。四角 囲みを付けることで、マーカがその位置に固定されます。
- 4. 全てのマーカを位置決めし終わったら、Position Molecular Weight Standard ダイアログボックスの OK ボタンをクリックします。
- 分子量スタンダードのマーカを常に表示する:

バンド上の水色のマーカは、通常は Molecular Weight Standard ダイアログボックスを閉じると同時に消えますが、これを常に表示させるには、ダイアログボックス下部の Always show mol. weight standard (分子量スタンダードを常に表示する) オプションを選択します。

■ 分子量スタンダードの値をグラフ表示する:

Molecular Weight Standard ダイアログボックスの Graph (グラフ表示) ボタンをクリックすると、分子量と泳動量の関係を示すグラフを表示します。

2.4.1.2 スマイリング補正 (Slant)

泳動時の電圧等の影響で、バンドの泳動距離が不均一になった画像では、等分子量のバンド同士を横方向に結んで補正を行なうことができます。

▼ 操作 - スマイリング補正

1. 1D-Gel ツールパレットの Slant (スマイリング補正) ボタンをクリックします。

	🖓 1 D-Gel 🛛 🗙
	Rotate
	Lanes
	Well Origin
	Bands
	Background
	M.W. Standard
クリックします ――	Slant
	Results

- Slant Correction ダイアログボックスが開いたら、Polynomial Fit Slant (多項式の あてはめ関数を補正線に適用)が選択されていることを確認します。
- 3. Auto. Slant Lines (自動で補正線を引く) ボタンをクリックします。

画像内に黄色のスマイリング補正線が表示されます。

 OK ボタンをクリックして、Slant Correction ダイアログボックスを閉じます。この操 作により、画像内の等分子量のバンド同士が補正線によって結ばれ、スマイリン グが補正されました。

注記: 上記の Auto. Slant Lines ボタンは、画像内に複数の分子量マーカ(ここで は1番と12番のレーン) が写っている場合にのみ使用できます。分子量マーカの レーンが1本だけの場合は、手動でスマイリング補正線を引く必要があります。手 動で補正を行なう手順は、下記の「スマイリング補正 – その他のオプション」をご 覧下さい。

>>> 次のステップ「2.4.1.3 分子量の算出」(2-23ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】スマイリング補正 – その他のオプション:

■ 手動でスマイリング補正線を引く:

これを行なうには、Slant Correction ダイアログボックスで Add Slant Line (手動 で補正線を引く) ボタンをクリックし、画像内にカーソルを入れて、等分子量のバ ンドを横方向にクリックしていきます(クリックされたバンドには黄色の*印が付き ます)。

等分子量のバンドをクリックして *印を付けていきます

Next M.W.ボタンをクリックすると、 スマイリング補正線が引かれます

1列のバンドを全てクリックしたら、Define Lines of Equal Molecular Weight (等分 子量のバンドを結ぶ線を引く)ダイアログボックスの Next M. W.(次へ進む)ボタ ンをクリックします。これで、* 印の付いたバンドがスマイリング補正線で結ばれ ます。この操作を繰り返して、必要な本数の補正線を引いてから、Define Lines of Equal Molecular Weight ダイアログボックスの OK ボタンをクリックして下さい。

■ スマイリング補正線にあてはめ(フィッティング)関数を適用する:

これを行なうには、Slant Correction ダイアログボックスの Polynomial Fit Slant (多項式のあてはめ関数を補正線に適用)オプションを選択してから補正線を引 きます。このオプションを選択しないと、補正線はバンド同士を結ぶ直線になりま す。

注記: このオプションは、Gel-Pro Analyzer バージョン4.0以前にはありませんで した。このため、旧バージョンの Gel-Pro Analyzer で作成した実験データをバー ジョン4.0以降で開くと、この Polynomial Fit Slant オプションは自動的に非選択に なります。これは、測定結果の整合性を維持するためです。

■ スマイリング補正線を削除する:

これを行なうには、Slant Correction ダイアログボックスの Delete Slant Line (補 正線を削除) ボタンをクリックして Delete Iso-M.W. Lines (等分子量線を削除) ダイアログボックスを開き、解析画像内の不要な補正線を十字形のカーソルでク リックします。不要な補正線を全て削除したら、OK をクリックします。

補正線を全て削除するときは、Delete All Lines (全補正線を削除) ボタンをクリックします。

2.4.1.3 分子量の算出

これまでの操作で、各バンドの分子量は既に算出されています。分子量を表示する操作は以下の通りです。

▼ 操作 - 分子量の算出

1. 1D-Gel ツールパレットの Results (測定結果) ボタンをクリックします。

上記の操作で、Amounts/Mol. Weights (質量/分子量) ウィンドウが表示されます (下図)。

	Toans C	alibrate <u>U</u>	odate							
Table shows	s molecular (weights only								
amount) ng	: (Me	ol.w.): bp	🗖 Rel/ba	nds 💽 Amou	unt: 🔿 Rel.a	b. 🔿 🕷 🖸) IOD 🔿 ma	x.OD		
Lanes: Rows	Lane 1 (mol.w.)	Lane 2 (mol.w.)	Lane 3 (mol.w.)	Lane 4 (mol.w.)	Lane 5 (mol.w.)	Lane 6 (mol.w.)	Lane 7 (mol.w.)	Lane 8 (mol.w.)	Lane 9 (mol.w.)	Lane 10 (mol.w.)
r1	23130									
r2							18218			
r3							16282			
r4							14966			
r5							13757			
r6							12295			
17					10244	10101	10684			
r8	9416						8424			
r9				7536		7128				
r10	6557		6381			5881				
r11	4361						5134			
r12		3845				3630			3508	
r13		3275					3468			
r14						3057				
r15								2887		2757

 分子量は [mol. w.] (分子量) の列に表示されます。表の中に [mol. w.] が表示されていない場合は、Show (表示) メニューから Molecular Weight (分子量)または Both (両方を表示する) オプションを選択して下さい。

en An	iounts,	/Mol.Weigl	nts ·	- Slant.t	if (1	/1)	
<u>F</u> ile	Show	<u>L</u> oads	<u>C</u> a	alibrate	U	odate	
Table	<u>A</u> me	ount or IO	D		ly.		
lama	✓ Mol	ecular <u>W</u> e	ight	_		E Ral/h	anda @
lamot	<u>B</u> ot	h		45			anus 🥶
Lane	<u>M</u> at	ch				Lane 3	Lane
Row	<u>R</u> ov	v Band Gr	aph.			(mol.w.)	(mol.w
1	Ban	d ID Onti	nns		Н		
12	Ban	ids/Lanes	Lat	nels	H		
13							
r4							

これで分子量が [mol. w.] の列に表示されます。

注記:測定結果を外部に出力する手順は下記の「2.5 測定結果を外部へ出力する」(2-57ページ)で、結果をデータベースに保存する手順は「2.6 データベース」 (2-63ページ)で説明します。

- >>> 次のステップ「2.4.2 質量(Amount)の測定」(2-27ページ)へ進んで 下さい。
- 以下は、ご参考用の詳細情報です。

【参考】分子量の測定 – その他のオプション:

■ Amounts/Mol. Weights (質量/分子量) ウィンドウの表内の数値と解析 画像内のバンドの位置関係:

表内の数値は、解析画像内のバンドにほぼ対応する位置に表示されています。 表内の数値の表示位置は、Amounts/Mol. Weights ウィンドウの Calibrate (較正) メニューにある Ratio to Band/Lane (バンド/レーンに対する比) コマンドで指定 できます。

Ratio to Band/Lane コマンドを実行して表示される Amounts Calibration Options (質量較正のオプション)ダイアログボックスの Display Molecular Weight (分子量 の表示オプション)欄では、分子量について以下の表示オプションを選択できま す。

Amounts Calibration Options X Display the amount in each band as a function of: • • The amount loaded in the lane. • • The amount in the same band in lan • • The amount in band on row • • The amount in band on row • • The amount in band on row • • The band in lane: • • The band in lane: • • The standard calibration curve. • • Display Molecular Weight • • In rows of equal Mol Weight! +/- 3 • In rows of equal Rt. • •	バンドを等分子量と みなす許容度を指定 します
Display presence/absence Value of each band relative to bands in 1 () Color coding: Green=match, Red=missing, Blue=mismate OK Help	

In rows of equal Mol. Weight (等分子量の横列に表示): 等分子量のバンドの測定値を横列に並べて表示します。バンド同士を等分子量と見なす許容度は、右隣の +/- 欄で指定できます。左右のレーンに対応するバンドが存在しないときは、その位置のセルが表内で空欄になります。

- In rows of equal Rf (等Rfの横列に表示): Rf (レーンの全長に対する泳動距離の比)が同じバンドを横列に並べて表示します。左右のレーンに対応するバンドが存在しないときは、その位置のセルが表内で空欄になります。
- Packed (詰めて表示): 左右のレーンのバンドとの対応関係を無視して、各レーン内のバンドの値を上から順に詰めて配列します。このため、このオプションを選択したときは、表内の各レーンの内部に空欄のセルが生じません。

amount)	ng (M	ol.w.): bp	Rel/ba	nds 📀 Amo	int; C Rela	b. C % [C		
Lanes: Rows	Lane 1 (mol.w.)	Lane 2 (mol.w.)	Lane 3 (mol.w.)	Lane 4 (mol.w.)	ne 4 Lane 5 Lane ol.w.) (mol.w.) (mol.w			
r1	23130							
12								
r3	9416				10244	10101		
r4	6557		6381	7536		7128		
r5						5881		
r6	4361							
17		3275				3057		
r8	2322							
r9	2027							
r10								
r11	564		321					
r12	125					200		
r13	10			11		8		
r14	3							
r15	1							

amount)	ne (M	olw.): bp	F Rel/ba	nds 🖲 Amo	unt; C Rela	b. © % [C
Lanes: Bands	Lane 1 (mol.w.)	Lane 2 (mol.w.)	Lane 3 (mol.w.)	Lane 4 (mol.w.)	Lane 5 (mol.w.)	Lane 6 (mol.w.)
1	23130	3845	6381	7536	10244	10101
2	9416	3275	321	11		7128
3	6557					5881
4	4361					3630
5	2322					3057
6	2027					200
7	564					8
8	125					
9	10					
10	3					
11	1					
12						

通常の表示

Packed オプション選択時の表示

■ 等分子量のバンドの、レーン間でのマッチングを調べる:

これを行なうには、Amounts/Mol. Weights の Show (表示) メニューにある Match (マッチング) オプションを選択します。このオプションでは、指定した基準レーン 上のバンドと一致するバンド(等分子量のバンド)が、他のレーンに存在するかど うかを数字と色で表示します。

Fable shou	as molecul		eights on	lu l								_		_		
	As molecul	ar 11	Cignes on	יי. רר			-			_		_		_		
amount) r	ng	(Mo	l.w.): bp		Rel/ba	nds	s 💽 Amou	int;	C Rel.ab.	C		U	C max.0	D		
Lanes: Rows	Lane 1 (mol.w.)		Lane 2 (mol.w.)		Lane 3 (mol.w.)		Lane 4 (mol.w.)		Lane 5 (mol.w.)		Lane 6 (mol.w.)		Lane 7 (mol.w.)		Lane 8 (mol.w.)	
r1		1		0		0		0		0		0		0		0
r2														-1		
r3							ĺ							-1	ĺ	
r4												Í		-1		
r5														-1		
r6												Í		-1		
r7										-1		1		-1		
r8		1		0		0		0		0		0		1		0
r9	(-1				1			í i	
r10		1		0		1		0		0		1		0		0
r11		1		0		0		0		0		0		1		0
r12				-1					,			1				

各セルに表示される数値と色の関係は次の通りです。

- 基準レーン内のバンドに一致するバンドが存在する: 緑、 1
- 基準レーン内のバンドに一致するバンドが存在しない:赤、 0
- 基準レーン内のバンドに一致しないバンドが存在する: 青、 -1

マッチングの設定は、Calibrate (較正) メニューの Ratio to Band/Lane (バンド/ レーンに対する比) コマンドを実行し、Amounts Calibration Options (質量較正の オプション) ダイアログボックスを開いて行ないます。

- 特定のバンドが基準バンドと等分子量であるかどうかを判断する許容度 は、Display Molecular Weight (分子量の表示) 欄の in rows of equal Mol. Weight (等分子量の横列に表示) オプションの右にある +/- 欄で指定しま す。
- 基準バンドのレーンは、The amount in the same band in lane...(相対量の 基準となるレーンの番号)欄で指定します。例えば、この欄で1番目のレー ンを指定すると、1番目のレーン内の各バンドと比べて等分子量のバンド が、他のレーンに存在するかどうかを判定します。
- 測定データを外部出力する方法:

これについては、2-57ページ以降をご覧下さい。

2.4.2 質量 (Amount) の測定

解析画像内のレーンとバンドが検出されたら、バンドの質量を算出することができま す。この処理の概要は次の通りです。

- バックグラウンドの補正:
 バックグラウンド(画像の背景の領域)の値をバンドのシグナルから減算することで、測定値を補正する処理です。

質量を測定する場合、次の2つの較正のうち、いずれかが必要となります。

- 各レーンのウェルにアプライした遺伝物質の質量を基準にして較正する または
- 画像内に写っている、既知の質量を持つバンドを基準にして較正する

質量を測定する手順は、以下の通りです。

2.4.2.1 バックグラウンドの補正

最初に、バックグラウンドの値をバンドの値から減算します。

▼ 操作 – バックグラウンドの補正:

 画像内にレーンとバンドが表示された状態で、1D-Gels メニューの Show Graph (レーンプロファイルを表示)コマンドを実行します。

Lane Profile ウィンドウが開き、レーンプロファイルが表示されます。

注記:レーンプロファイルの表示は、上図とは異なっている可能性があります。 レーンプロファイルについて詳しくは、「2.4.5 レーンプロファイル」(2-46ページ) をご覧下さい。

- Lane Profile ウィンドウの Baseline (ベースライン)メニューにある Profile minus baseline (ベースラインから下を表示しない)オプションが非選択になっていること を確認します。
- 3. Baseline メニューにある Rolling Disk (ローリングディスク)コマンドを実行します。
- 4. ダイアログボックスの Rolling disk radius (0 to 100% of lane length) [ローリングデ ィスクの半径(レーンの長さの0~100%)] 欄に「25」と入力し、Close ボタンをクリッ クします。

これで、ローリングディスク・フィルタによるバックグラウンド補正が適用されました。

ベースラインよりも下の部分が、バンドの値から減算されます。

>>> 次のステップ「2.4.2.2 アプライ量による較正」(2-33ページ)へ進んで 下さい。

以下は、ご参考用の詳細情報です。

【参考】バックグラウンドの測定 – その他のオプション:

上記の Rolling Disk (ローリングディスク)オプションの他にも、Gel-Pro Analyzer は様 々なバックグラウンド補正オプションをサポートしています。

バックグラウンド補正オプションは、以下の手順で呼び出せます。

Lane Profile ウィンドウの Baseline (ベースライン) メニューでオプションを選択する

または

 1D-Gel ツールパレットの Background (バックグラウンド補正) ボタンで Background Correction (バックグラウンド補正) ダイアログボックスを開き、Background correction selected (選択中のバックグラウンド補正オプション) 欄でオ プションを選択する

使用可能なバックグラウンド補正オプションは、以下の通りです。

■ None (補正なし):

Lane Profile ウィンドウの Baseline メニューから None を選択すると、バックグラ ウンド補正を行ないません。この設定ではベースラインを表示しません。

■ Flat (平坦):

このオプションを選択すると、ベースラインが水平の直線として表示されます。このベースラインのレベルは、各レーン内で検出された最も低い値を表します。

■ Join Valleys (谷間を結ぶ):

各レーンの最も低い点(「谷」のレベル)を結ぶことで、滑らかな曲線のベースライ ンを引きます。

このオプションを選択すると、Maximum baseline slope (1 to 100%) [ベースライン の最大傾き(1~100%)] を設定するダイアログボックスが表示されます。Maximum baseline slope とは、谷同士を結ぶベースラインの最大の傾きで、1~100%の範 囲で指定します。隣接する2つの谷を結ぶ線の傾きがこの設定値を越える場合 は、その2つの谷は結ばれず、ベースラインは次の谷へ順次スキップし、その谷 との傾きが設定値を越えないかどうか判断します。 Gel-Pro Analyzer スタートアップマニュアル ー【1次元ゲルの解析】

Join Valleys 選択時

	en La	ne Pro	file – Slant.	tif (1/1)								-	
	<u>F</u> ile	<u>P</u> lot	<u>B</u> aseline	Band <u>I</u> D	<u>U</u> pdate	[Z+] [Z=] [Z-]	[X+] [>	≔] [X-]	Lane +	Lane -		
eys 【時	G L	16 14 12 10 8 6		~-7 			4 4 Mol. We	if (1/1)	5 564 1	18 25			À
	4											P	

■ From Image (値を画像から取得):

このオプションを選択すると、解析画像内にバックグラウンド補正線(紫色の垂直線)が引かれ、その線上の値をバックグラウンドの値としてバンドの値から減算します。

各レーンに最も近い位置の補正線が、そのレーンにとってのバックグラウンドとなります。

紫色のバックグラウンド補正線は、From Imageオプションを選択すると同時に、 画像内に自動的に引かれますが、手動で任意の位置に引くこともできます。補正 線を手動で引くには、1D-Gel ツールパレットで Background ボタンをクリックして Background Correction ダイアログボックスを開き、以下の手順を実行します。

	ୁର 1D-Gel 🗙
	Rotate
	Lanes
	Well Origin
	Bands
リックします ――	Background

ク

- 新しい補正線を引くには、Add Line (補正線を追加)ボタンをクリックしてから、画像内にカーソルを入れ、補正線を追加したい位置をクリックします。最後に Add Background Lines (バックグラウンド補正線を追加)ダイアログボックスの OK ボタンをクリックします。
- 既存の補正線を削除するには、Delete Line (補正線を削除) ボタンをクリッ クしてから、画像内の不要な補正線をクリックし、Delete Background Lines (バックグラウンド補正線を削除)ダイアログボックスの OK ボタンをクリック します。
- 全ての補正線を一度に削除するには、Delete All (全削除) ボタンをクリック します。
- 全ての測定線をリセットしてデフォルトの位置に戻すには、Reset Lines (補 正線をリセット) ボタンをクリックします。
- バックグラウンドの値を減算した状態の画像を見たいときは、Show
 Corrected Image (補正後の画像を表示)ボタンをクリックします。補正後の 状態を表す画像が、新規画像として作成されます。
- 紫色のバックグラウンド補正線は、通常は Background Correction ダイアロ グボックスを閉じると同時に消えます。補正線を常に表示させておきたい場 合は、Always show background lines (バックグラウンド補正線を常に表示) オプションを選択します。

注記: Well Origin (ウェル位置補正、2-12ページ)でウェルの位置を指定している ときは、バックグラウンド補正線の長さが不均一になるためFrom Imageオプショ ンを使用できませんので、ご注意下さい。

■ Filtered Profile (プロファイルをフィルタ処理):

このオプションは、モフォロジカル切断フィルタを使用して画像のバックグラウンドを抽出し、これを減算します。つまり、フィルタ処理によって画像のピーク部分を 全て除去し、残った部分をバックグラウンドとします。 Profile 選択時

このオプションを選択するとダイアログボックスが開き、Filter diameter (0 to 50% of lane length)「フィルタの直径(レーンの長さの0~50%)」の値を指定できます。 この値はフィルタの直径で、レーンの長さの0~50%の範囲で指定できます。大き い値を指定するほど、ベースラインは平坦になります。

■ Rolling Disk (ローリングディスク):

このオプションは、谷から谷へディスクを転がすことによりバックグラウンドを抽出 します。ベースラインは、ディスクの輪郭上の最も高い点が通る軌跡になります。

このオプションを選択するとダイアログボックスが開き、Rolling disk radius (0 to 100% of lane length) [ローリングディスクの半径(レーンの長さの0~100%)]を指 定できます。この値はローリングディスクの半径で、レーンの長さの0~100%の範 囲で指定できます。大きい値を指定するほど、ベースラインは平坦になります。

Profile minus baseline (ベースラインから下を表示しない):

このオプションを選択すると、ベースラインから下の領域(プロファイルから減算 される部分)をラインプロファイルに表示しません(つまり、バックグラウンド減算 後のピークのみを表示します)。

バックグラウンド減算後の画像を見たいときは、1D-Gel ツールパレットの Background ボタンをクリックし、Show Corrected Image (補正後の画像を表示) ボタンをクリックして下さい。減算後の状態を表す画像が、新規画像として作成さ れます。

2.4.2.2 アプライ量による較正

ゲルの各ウェルにアプライした遺伝物質の量が既知であるときは、アプライ量による 較正を行ないます。

アプライ量による較正では、レーンにアプライされた全体の量を既知の値として、各バンドとレーン全体の比率から個々のバンドの質量(マス)を算出します。例えば、レーンへのアプライ量が 39 ng で、特定のバンドがレーン全体に対して30%の比率を占める場合、そのバンドの質量は 39 × 0.3 = 11.7 ng になります。

▼ 操作 - アプライ量による較正:

- 画像内にレーンとバンドが表示された状態で、1D-Gel ツールパレットの Results(測定結果)ボタンをクリックして、Amounts/Mol. Weights (質量/分子量) ウィンドウを開きます。
- 2. Show (表示) メニューから Both (両方を表示する)を選択します。
- Loads (アプライ量) をクリックします。Lanes Loading (各レーンのアプライ量) ダイ アログボックスが開きます。
- Force equal amount in all (全レーンを等量にする) オプションが非選択になって いることを確認します。
- 5. 左の欄で Lane 1 をクリックして選択してから、Amount loaded in lane 1 (レーン1のアプライ量) 欄に「39」と入力し、リミットチェックボタン☑をクリックします。

これで、左の欄に"Lane 1 39"と表示されます。

Gel-Pro Analyzer スタートアップマニュアル ー【1次元ゲルの解析】

Gel-Pro Analyzer スタートアップマニュアル ー【1次元ゲルの解析】

Calibrate (較正) メニューの Ratio to Band/Lane (バンド/レーンに対する比) コマ ンドで The amount loaded in the lane. (レーンへのアプライ量) を選択するとアプ ライ量による較正がかかり、The standard calibration curve. (標準較正曲線) を 選択すると較正曲線による較正がかかります。

>>> 次のステップ「2.4.2.3 較正曲線による較正」(2-36ページ)へ進んで 下さい。 以下は、ご参考用の詳細情報です。

【参考】アプライ量による較正 – その他のオプション:

■ レーンの質量の損失を補償する:

Amounts/Mol. Weights ウィンドウの Rel/bands (相対量/バンド)オプションを選 択すると、レーン内に検出された質量ではなく、レーンへのアプライ量(上記)に対 する相対量として質量を算出します。

🕄 Amounts/Mol.Weights - Slant.tif (1/1	p
<u>F</u> ile <u>S</u> how <u>L</u> oads <u>C</u> alibrate <u>U</u> pda	te
Amount in each band, in relation to amo	unt loaded in each lane.
(amount) ng (Mol.w.): bp 🖡	Rel/bands 💿 Amount: 🔿 Rel.ab. 🤉 🕷 IOD
Lanes: Lane 1	Lane 2 Lane 3

これにより、各バンドの質量が比例的に増加してバンド間の空隙部分を補償し、 各レーンの質量の合計(Sum)がアプライ量に一致します。

2.4.2.3 較正曲線による較正

各レーンのウェルへのアプライ量ではなく、特定のバンドの質量が既知である場合 は、較正曲線(検量線)による較正を行なうことができます。

以下の操作では、例として1番目のレーンの1番目のバンドの質量が 12.6 ng、2番目 のバンドが 6.6 ng、3番目のバンドが 4.2 ngであることが既知のデータとして与えられ ているものとし、それに基づいて較正曲線を作成して較正を行ないます。

▼ 操作 - 較正曲線による較正

 画像内にレーンとバンドが表示された状態で、1D-Gel ツールパレットの Results
 (測定結果)ボタンをクリックして、Amounts/Mol. Weights (質量/分子量)ウィンド
 ウを開きます。

Gel-Pro Analyzer スタートアップマニュアル ー【1次元ゲルの解析】

- 2. Show (表示) メニューから Both (両方を表示する)を選択します。
- Calibrate (較正) メニューから Standard Calibration Curve (標準較正曲線)を選 択します(Allow Multiple Calibration Curves は、ここでは非選択にしておきます)。

Calibrating amounts from known bands (既知のバンドで質量を較正) ダイアログ ボックスが表示されます。

4. 解析画像内にカーソルを入れ、カーソルが十字形になったら、1番目のレーンの1 番目のバンドをクリックします。Band volume (バンドの量) 欄と Band amount (バンドの既知の質量) 欄に同じ数値が表示されます。

5.

6.

- 7. 同様に、1番目のレーンの2番目のバンドをクリックし、Band amount 欄に「6.6」と 入力してから、Add/Change ボタンをクリックします。
- 8. 同様に、1番目のレーンの3番目のバンドをクリックし、Band amount 欄に「4.2」と 入力してから、Add/Change ボタンをクリックします。

- 9. Amounts in (質量の単位) 欄に"ng"と入力します。
- Fitting Method (あてはめ方式) 欄で Best Fit (最適合わせ込み)を選択します。
 中央の較正曲線(検量線)が最適化され、変化します(下図)。

- OK をクリックして Calibrating amounts from known bands ダイアログボックスを 閉じます。
- 12. Amounts/Mol. Weights ウィンドウの Calibrate (較正) メニューにある Ratio to Band/Lane (バンド/レーンに対する比) コマンドを実行します。

Amounts Calibration Options (質量較正のオプション) ダイアログボックスが開き ます。

Display the amount in each band as a function of (各バンドの質量を算出する基準) 欄で、The standard calibration curve. (標準較正曲線) オプションが選択されていることを確認し、OK をクリックします。

14. Amounts/Mol. Weights ウィンドウの上部にある、Amounts (質量) オプションを選 択します。

選択します	-
-------	---

🖃 Amounts	/Mol.Weights	- Slant.tif (1	/1)			
<u>F</u> ile <u>S</u> how) <u>L</u> oads <u>C</u> a	alibrate <u>U</u> p				
Amount in	each band usi	ng the Calib				
(amount) n	s (Mo	l.w.): bp	Rel/band:	s 🄄 Amount	C Rellab. (O X O IOD

上記の操作で、画像内のバンドの質量が、バンドの既知の質量に基づいて較正 されました。各バンドの質量は、Amounts/Mol. Weights ウィンドウの [amount] の 列に表示されます。 注記: 前述のアプライ量による較正と、上記の較正曲線による較正は相互排除 的です。Calibrate (較正) メニューの Ratio to Band/Lane (バンド/レーンに対す る比) コマンドで The amount loaded in the lane. (レーンへのアプライ量) を選択 するとアプライ量による較正がかかり、The standard calibration curve. (標準較 正曲線)を選択すると較正曲線による較正がかかります。

>>> 次のステップ「2.4.3 積分光学濃度(IOD)の測定」(2-42ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】較正曲線による較正 – その他のオプション:

■ Fitting Method (あてはめ方式) 欄で選択可能なオプション:

Calibrating amounts from known bands ダイアログボックスの Fitting Method 欄 では、曲線のあてはめ用の関数として、以下のオプションを選択できます。

- ー 1st order Lagrange: 1次ラグランジュ
- 2nd order Lagrange: 2次ラグランジュ
- 3rd order Lagrange: 3次ラグランジュ
- 1st order polynomial: 1次多項式
- 2nd order polynomial: 2次多項式
- 3rd order polynomial: 3次多項式
- Best Fit: 最適合わせ込み(これを選択すると、最適なあ てはめ関数を自動選択します)

■ 較正曲線の下に表示される Sqr. Error (二乗誤差):

Sqr. Error は、Fitting Method 欄で polynomial オプションが選択された時に、較 正曲線に対する相関係数を表示します。この値が0に近いほど、理想的な曲線 になります。

■ 複数の較正データセットを使用する:

Gel-Pro Analyzer に複数の較正データセットを登録して、切り替えながら使用することができます。これを行なうには、Amounts / Mol. Weights ウィンドウの Calibrate メニューにある Allow Multiple Calibration Curves (複数の較正曲線を使用する)オプションを選択します (クリックして「√」印を付けます)。

🕾 Amounts/Mol.Weig	nts - SLANT.TIF (1/1)	
<u>F</u> ile <u>S</u> how <u>L</u> oads	<u>C</u> alibrate <u>U</u> pdate	
Amount in each band,	✓ Allow Multiple Calibration Curves	── 選択します
(amount) ng	<u>R</u> atio to Band/Lane <u>S</u> tandard Calibration Curve	(√印を付けます)

Allow Multiple Calibration Curves オプションを選択してから Standard Calibration Curve (標準構成曲線)コマンドを実行すると、次の Amount Calibrations (質量 較正データセット)ダイアログボックスが表示されます。

欄内の最上位に表示されているのが、デフォルトの較正データです

- 較正データを新規作成して登録するには、Add (追加)ボタンをクリックします。Calibrating amounts from known bands (既知のバンドで質量を較正)が 開きますので、2-37ページの4.以降の手順で較正を行なって下さい。
- 較正が終了すると、較正データがGel-Pro Analyzerに登録され、上の Amount Calibrations ダイアログの欄に表示されます。
- 既存の較正データの内容を変更するには、その較正データ名を Amount Calibrations 欄内で選択してから、Edit (編集)ボタンをクリックして下さい。す ると Calibrating amounts from known bands ダイアログが開きますので、2-37ページの4.以降の手順で較正をやり直して下さい。
- 較正データを削除するには、Amount Calibrations 欄内で較正データ名を選 択してから Delete (削除)ボタンをクリックします。全較正データを一括削除 するには、Delete All (全削除)ボタンをクリックします。
- Amount Calibrations 欄に表示されている全較正データをファイルに保存するには、Save Set (較正データセットを保存)ボタンをクリックし、ファイル名を付けて保存します(ファイルは"*.cst"形式になります)。
- 較正データをファイル(".cst")から呼び出すには、Load Set(較正データセットをロード)ボタンをクリックし、ファイルを選択して開きます。ファイルから呼び出された較正データは、Amount Calibrations欄に表示されます。
- Amount Calibrations 欄に表示されている較正データから一つを選んで、画像内の特定のバンドに適用したいときは、Amount Calibrations 欄で較正データを選択してから、Assign to bands(指定バンドに適用)ボタンをクリックします。Assign Calibration to bands(較正データを指定したバンドに適用)ダイアログが開き、画像内の全バンドに赤い「*」印が付きますので、較正データを適用したいバンドをクリックします。

クリックされたバンドには黄色の「 * 」印が付きます。最後にAssign Calibration to bands ダイアログのOK ボタンをクリックします。

注記: Amount Calibrations ダイアログボックスは、ドットブロット解析ツール (Dot Blot)や、濃度の解析ツール(Area Density)からも使用できますが、そ の場合は、Assign to bands ボタンの名前が次のように変わります。

1D-Gelsでのボタン名	DotBlotでのボタン名	Area Densityでのボタン名
Assign to bands	Assign to dots	Assign to areas
(指定バンドに適用)	(指定ドットに適用)	(指定領域に適用)

 Amount Calibrations 欄に表示されている較正データから一つを選んでデフ オルトの較正データに設定し、同時に画像内の全バンドに適用したいとき は、較正データを選択してから、Assign to all (全バンドに適用)ボタンをクリ ックします。

ボタンをクリックすると、較正データが全バンドに適用され、同時に選択中の 較正データが Amount Calibrations 欄の最上位に表示されます。

- Amount Calibrations ダイアログボックスでの作業が終了したら、OK ボタン をクリックして下さい。
- Amount Calibrations ダイアログで複数の較正データを作成して登録してい る場合、測定結果の表からバンドに較正データを適用することもできます。 これを行なうには、Amounts/Mol. Weights ウィンドウの中で、バンドの質量 の測定値(Amount)を右クリックします。すると次のダイアログが開きます。

較正データを欄内で選択してから、OK をクリックして適用します。

注記:上記の操作は、ドットブロット解析ツールの測定結果ウィンドウ (Integrated Intensity または Calibrated Mass)や、濃度測定ツールの Area Density Tool ウィンドウ内の測定値を右クリックすることでも実行可能です。

2.4.3 積分光学濃度 (IOD) の測定

解析画像内のレーンとバンドが検出されたら、バンドの積分光学濃度を算出できま す。手順は以下の通りです。

▼ 操作 - 積分光学濃度(IOD)の測定

- Amounts/Mol. Weights (質量/分子量) ウィンドウの Show (表示) メニューから Amount or IOD (質量または積分光学濃度) オプション、または Both (両方を表 示する) オプションを選択します。
- Amounts/Mol. Weights ウィンドウ上部の IOD (積分光学濃度) オプションを選択 します。

File Shov	v <u>L</u> oads <u>C</u> a	alibrate <u>U</u> pd	late					
Absolute ir	ntegrated OD o	f each band.						
(IOD) G	i.L.*Pixel: (Mol	l.w.): bp	🔽 Rel/bands	: 🔿 Amount:	🔿 Rel.ab. 🤇) % (<mark>6 100</mark>	🖸 🔿 max.OD]
Lanes: Bands	Lane 1 (mol.w.)	(IOD)	Lane 2 (mol.w.)	(IOD)	Lane 3 (mol.w.)	(IOD)	Lane 4 (mol.w.)	(IOD)
-3 Amount	s/MolWeights	- Slanttif (17	/1)					
🕄 Amount:	s/Mol.Weights	- Slant.tif (17	/1)					
<u>F</u> ile <u>Sho</u>	w <u>L</u> oads <u>C</u> a	alibrate <u>U</u> po	date					
Absolute i	ntegrated OD o	of each band.]
Absolute i (IOD) (ntegrated OD o à.L.*Pixel: (Mo	of each band. I.w.): bp	Rel/band:	s C Amounts	: C Rel.ab. (0 % (© 100) 🔿 max.OD	1
Absolute i (IOD) (Lanes: Rows	ntegrated OD o a.L.*Pixel: (Mo Lane 1 (mol.w.)	of each band. I.w.): bp (IOD)	Rel/band: Lane 2 (mol.w.)	s 🔿 Amounts (IOD)	C Rel.ab. (Lane 3 (mol.w.)	(IOD)	C max.OD Lane 4 (mol.w.)	(IOD)
Absolute i (IOD) (Lanes: Rows r1	ntegrated OD o G.L.*Pixel: (Mo Lane 1 (mol.w.) 23130	of each band. I.w.): bp (IOD) 18222	Rel/band: Lane 2 (mol.w.)	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	0 % 💽 🖸	C max.OD Lane 4 (mol.w.)	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2	ntegrated OD o G.L.*Pixel: (Mo Lane 1 (mol.w.) 23130	of each band. I.w.): bp (IOD) 18222	Rel/band: Lane 2 (mol.w.)	s C Amount: (IOD)	C Rel.ab. (Lane 3 (mol.w.)	0 % (IOD)	C max.OD Lane 4 (mol.w.)	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3	ntegrated OD o G.L.*Pixek: (Mo Lane 1 (mol.w.) 23130	of each band. I.w.): bp (IOD) 18222	FRel/band: Lane 2 (mol.w.)	s C Amounts (IDD)	C Relab. (Lane 3 (mol.w.)	(IDD)	C max.OD Lane 4 (mol.w.)	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4	ntegrated OD o a.L.*Pixek (Mo Lane 1 (mol.w.) 23130	of each band. Lw.): bp (IOD) 18222	Rel/band:	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IOD)	C max.OD	(100)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5	ntegrated OD of a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130	of each band. (w.): bp (IOD) 18222	♥ Rel/band: Lane 2 (mol.w.)	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IOD)	C max.OD	
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7	ntegrated OD of a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130	of each band. (w.): bp (IOD) 18222	♥ Rel/band: Lane 2 (mol.w.)	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IOD)	C max.OD	
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7 r7 r9	Antegrated OD of all *Pixels (Mo	(IOD) 18222	Rel/band:	s C Amounts (IDD)	C Relab. (Lane 3 (mol.w.)	(IDD)	C max.OD	(IOD)
Absolute i (IOD) (Lanes: Rows 11 12 13 14 15 16 17 17 18 29	ntegrated OD a a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130 9416	of each band. I.w.): bp (IOD) 18222 9096.1	Rel/band:	(IDD)	C Relab. (Lane 3 (mol.w.)		C max.OD	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7 r8 r9 r9 r9	ntegrated OD d a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130 3416 9416	of each band. I.w.): bp (IOD) 18222 9096.1 5554	♥ Rel/band: Lane 2 (mol.w.)	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IDD)	C max.OD Lane 4 (mol.w.) 7536	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r10 r11	ntegrated OD a a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130 3416 9416 6557 4251	of each band. (w.): bp (IOD) 18222 9096.1 5664 5177 2	Rel/band:	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IOD) (IOD) 7186.4	C max.OD	(IOD) (IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7 r8 r8 r9 r10 r11 r12 r2 r3 r4 r5 r6 r7 r8 r8 r8 r9 r8 r8 r8 r8 r8 r8 r8 r8 r8 r8	ntegrated OD a a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130 23130 3416 9416 6557 4361	of each band. (w.): bp (IOD) 18222 9096.1 5664 5177.2	Rel/band:	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.)	(IOD) (IOD) 7186.4	C max.OD	(IOD)
Absolute i (IOD) (Lanes: Rows r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r12 r12 r3 r4 r5 r6 r7 r8 r19 r10 r11 r12 r12 r17 r18 r19 r10 r17 r18 r19 r19 r19 r19 r19 r19 r19 r19	ntegrated OD (a.L.*Pixel: (Mo Lane 1 (mol.w.) 23130 23130 3416 9416 6557 4361	of each band. [w.): bp (IOD) 18222 9096.1 5664 5177.2	✓ Rel/band:	s C Amounts (IOD)	C Relab. (Lane 3 (mol.w.) 6381	(IOD) 7186.4	C max.OD	(IOD)

>>> 次のステップ「2.4.4 相対量の算出」(次ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】積分光学濃度の測定 – その他のオプション:

■ max. OD (最大光学濃度)を算出する:

Amounts/Mol. Weights ウィンドウの Show メニューから Amount or IOD オプションないし Both オプションを選択した状態で、Amounts/Mol. Weights ウィンドウの 上部にある max. OD オプションを選択します。レーンプロファイルの各ピークの 値が [max OD] の列に表示されます。

2.4.4 相対量の算出

解析画像内のレーンとバンドが検出されたら、特定のバンドを基準バンドに指定して、 それに対する他のバンドの相対量を算出できます。手順は以下の通りです。

▼ 操作 - 相対量の算出:

- Amounts/Mol. Weights (質量/分子量) ウィンドウの Show (表示) メニューから Amount or IOD (質量または積分光学濃度) オプション、または Both (両方を表 示する) オプションを選択します。
- 2. Amounts/Mol. Weights ウィンドウ上部の Rel. ab. (相対量) オプションを選択しま す。

Amounts.	/Mol.Weights	- Slant.tif (17	(1)				
<u>F</u> ile <u>S</u> how	<u>L</u> oads <u>C</u> a	alibrate <u>U</u> po	late				
Amount in e	each band usi	ng the Calibr	ation Curve.				
(amount) R	el.Ab. (Mo	l.w.): bp	🔽 Rel/band:	s 🔿 Amount:	🛈 Relab. (0 %	0 100
Lanes: Bands	Lane 1 (mol.w.)	(amount)	Lane 2 (mol.w.)	(amount)	Lane 3 (mol.w.)	(amo	unt)
1	23130	.32843	3845	.51768	6381		.56924

- 3. Calibrate (較正) メニューの Ratio to Band/Lane (バンド/レーンに対する比) コマ ンドを実行して Amounts Calibration Options (質量較正のオプション) ダイアログ ボックスを開きます。
- Display the amount in each band as a function of (各バンドの質量を算出する基準) 欄で、以下のいずれかのオプションを指定します。
- The amount in the same band in lane ... (相対量の基準となるレーンの番号):

このオプションを選択し、右の欄内で基準レーンの番号を指定すると、そのレー ン内のバンドの値が全て「1」に正規化され、画像内の対応する横列のバンドの 値が、全て基準からの相対値になります。例えば、1番のレーンを基準レーンに 指定すると、1番のレーン内のバンドの値が全て「1」になります。同時に、1番の レーンの各バンドに対して水平方向で対応する他のレーンのバンドが相対値で 算出されます。

S Amounts	/Mol.Weights	- Slant.tif (1/1)				_ [⊐ ×	
<u>F</u> ile <u>S</u> how	<u>L</u> oads <u>C</u>	alibrate <u>U</u>	pdate						
Amount in each band, in relation to corresponding band of lane 1.									
(amount) Rel.Ab. (Mol.w.): bp 🔽 Rel/bands C Amount: 💿 Rel.ab. C % C IOD C max.OD									
Lanes: Rows	Lane 1 (Rel.Ab.)	Lane 2 (Rel.Ab.)	Lane 3 (Rel.Ab.)	Lane 4 (Rel.Ab.)	Lane 5 (Rel.Ab.)	Lane 6 (Rel.Ab.)	Lane 7 (Rel.Ab.)	\square	
r1	$\left \right $								
r2							undet.		
r3	1				.63565	.44670	.84066		
r4	1		1.2536	1.2249		.97703			
r5						undet.			
r6	Amounts/MolWeights - Slanttif (1/1)								
17			ロックレ 生(~=乳(亡)			undet.	undet.		
r8	1	7 🕹	判し設定し	し7に19リ 「					
19		/					2.3826		

The amount in band on row ..., in the lane (相対量の基準となるバンド横列の番号):

このオプションを選択し、欄内で基準のバンド横列の番号を指定すると、その横 列のバンドの値が全て「1」に正規化され、各レーン内の他のバンドの値が、その 基準からの相対値になります。

Amounts/MolWeights - Slanttif (1/1)										
Amount in (Amount in each band in relation to band in same lane of row 4.									
(amount) Rel.Ab. (Mol.w.): bp 🔽 Rel/bands C Amount: 📀 Rel.ab. C % C IOD C max.OD										
Lanes: Rows	Lane 1 (Rel.Ab.)	Lane 2 (Rel.Ab.)	Lane 3 (Rel.Ab.)	Lane 4 (Rel.Ab.)	Lane 5 (Rel.Ab.)	Lane 6 (Rel.Ab.)	Lane 7 (Rel.Ab.)			
r1	3.0004							_		
r2							undet.			
r3	1.5715				undet.	.71848	undet.			
r4	1		1	1		1	>			
r5						.83924				
r6	.91418	Ц ь.	5. A	المراني ما			undet.			
17			いら4番日			.93058	undet.			
r8	.52080	│ 横 種	列を基準(こ設定した	と例 📃					
r9	.80594						undet.			

The band in lane: ..., row: ... (相対量の基準となるレーンの番号...バンドの番号...): このオプションを選択し、最初の欄でレーンを、次の欄でバンドの横列を指定す ると、画像内の1個のバンドを基準バンドに指定し、それ以外の全バンドの値をそ の基準からの相対値として算出できます。

Eile Show	Amounts/MolWeights - Slanttif (1/1)										
Amount in o	[Amount in each band in relation to band in lane I, row].										
(amount) R	el.Ab. (M	ol.w.): bp	Rel/bar	nds 🔘 Amou	unt: 💽 Rel.a	<u>b.</u> O % C) IOD 🔘 ma	x.OD			
Lanes: Rows	Lane 1 (Rel.Ab.)	Lane 2 (Rel.Ab.)	Lane 3 (Rel.Ab.)	Lane 4 (Rel.Ab.)	Lane 5 (Rel.Ab.)	Lane 6 (Rel.Ab.)	Lane 7 (Rel.Ab.)				
r1 (1	$\mathbf{\mathcal{D}}$									
r2							.38352				
r3	.52376				.33293	.23396	.44031				
r4	.33329		.41783	.40825		.32563					
r5						.27328					
r6	.30469	1番	ヨのレー:	ンの1番目]の 🗌		.52329				
17		<u> </u>	ドを其進	-設定	+-個	.30303	.62202				
r8	.17358		- c 坐 + i								
r9	.26861						.64001				

5. 上記のオプションのいずれかを設定した後、Amounts Calibration Options ダイア ログボックスの OK ボタンをクリックします。これで、指定した基準に基づいて、画 像内の各バンドの相対量が算出され、[Rel. Ab.] の列に表示されます。

Eile Show	/Mol.Weights / <u>L</u> oads <u>C</u>	:−Slant.tif (∑alibrate <u>U</u>	1/1) pdate					□×
Amount in (each band, in	relation to d	corresponding	g band of lan	e 1.			
(amount) R	el.Ab. (Me	ol.w.): bp	🔽 Rel/ba	nds 🔿 Amou	unt: 💽 Rela	Б. С Ж. С) IOD 🔿 ma	x.OD
Lanes: Rows	Lane 1 (Rel.Ab.)	Lane 2 (Rel.Ab.)	Lane 3 (Rel.Ab.)	Lane 4 (Rel.Ab.)	Lane 5 (Rel.Ab.)	Lane 6 (Rel.Ab.)	Lane 7 (Rel.Ab.)	
r1	1							
r2							undet.	
r3	1				.63565	.44670	.84066	
r4	1		1.2536	1.2249		.97703		
r5						undet.		
r6	1						1.7175	
r7		undet.				undet.	undet.	
r8	1							
r9	1						2.3826	
r10								
r11	1		1.8289				5.7340	
r12	1					1.7897		
r13	1			23.780		12.832		
r14	1							
r15	1						5.4354	-
	•						•	

注記:相対量を算出する場合、対応する基準バンドを持たないバンドの値は、 "undet."(測定不能)と表示されます。

>>> 次のステップ「2.4.5 レーンプロファイル」(2-46ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】相対量の算出 – その他のオプション:

相対量の基準バンドの値を 100% に正規化して、他のバンドの値を パーセンテージで算出させる:

これを行なうには、Amounts/Mol. Weights ウィンドウの上部にある % オプション を選択します。

2.4.5 レーンプロファイル

1次元ゲルの解析では、1D-Gel ツールパレットの Lanes ボタンで画像内のレーンとバンドを検出すると同時に、Lane Profile (レーンプロファイル) ウィンドウが表示されます。

このウィンドウは、ゲル画像内の各レーン、ないし複数のレーンのプロファイル(濃度断面)をグラフ表示するものです。

▼ 操作 – レーンプロファイル:

<レーンプロファイルを開く>

レーンプロファイル (Lane Profile ウィンドウ) は、通常は1D-Gel ツールパレット の Lanes (レーン検出) ボタンでレーンとバンドの検出を行なうと同時に、自動的 に表示されます。もしレーンプロファイルが画面に表示されていないときは、次の 操作で表示できます。

 Gel-Pro Analyzer の 1D-Gels (1次元ゲル解析) メニューにある Show Graph (レーンプロファイルを表示) コマンドを実行します。

Lane Profile ウィンドウが表示されます。 _ 🗆 × 🕾 Lane Profile - Slanttif (1/1) <u>File Plot B</u>aseline Band ID <u>U</u>pdate [Z+] [Z=] [Z-] [X+] [X=] [X-] Lane + Lane -- Slant tif (1/1 Lane 1 100 160 -140 ¹⁰⁰,100,100 120 100 100 ↓¹⁰⁰ 80 100100100100 60 2322 23130 9416 4361 564 125 Mol. Weight in bo <1本のレーンプロファイルを見る> レーンプロファイルを1本ずつ見たいときは、Lane Profile ウィンドウの Plot (プロ 2. ット) メニューにある Show single lane (単一レーンを表示) オプションをクリックし て選択してから、Lane Profile ウィンドウの上部にある Lane + ボタンまたは Lane - ボタンをクリックします。 表示中のレーンの番号は、レーンプロファイルの上部に表示されます。 🕾 Lane Profile – Slant.tif (1/1) - 🗆 × <u>File Plot</u> Baseline Band ID Update [Z+] [Z=] [Z-] [X+] [X=] [X-] Lane + Lane -Show single lane - Slanttif (1/1) Lane 1 Show all lane 表示中のレーンの番号 レーンを切り替えます ✓ Lane Bitmap ✓ Lane 1 単一のレーンのプロファイルを表示します Lane 2 Lane 3 100,100,100 to 100 注記: Lane + ボタンまたは Lane - ボタンをクリックする代わりに、解析画像内の レーンのアウトライン(各レーンを囲む色付きの矩形枠)を直接クリックしても、表 示されるレーンを切り替えることができます。 <複数のプロファイルを重ね表示する> 複数のレーンプロファイルを重ねて見たいときは、Plot メニューにある Show 3 multiple lanes (複数レーンを表示)オプションをクリックして選択してから、解析画 像内の複数のレーンをクリックします。クリックされたレーンに対応するプロファイ ルが、Lane Profile ウィンドウに重ね表示されます。 - & Lane Profile - Slant.tif (1/1) Plot Baseline Band ID Update (Z+) (Z=) (Z-) (X+) (X=) (X-) Lane + Lane 重 複 ね表示した例 180 -160 -100 140 ¹⁰⁰, 100 , 100 120 -100 00 100 80 100100,100 60 2322 4361 564 125 9416 23130 Mol. Weight in bp

- 4. 全レーンを表示したいときは、Plot メニューから Show all lanes (全レーンを表示) オプションを選択します。
- >>> 次のステップ「2.4.6 表示オプションを使用する」(2-50ページ)へ進ん で下さい。

以下は、ご参考用の詳細情報です。

【参考】レーンプロファイル – その他のオプション:

レーンプロファイルの File (ファイル)メニュー:
 グラフや、グラフの元データの出力を行なうコマンドがあります。データの出力方法は、「レーンプロファイルの出力オプション」(2-59ページ)をご覧下さい。

■ レーンプロファイルの Plot (プロット) メニュー:

レーンプロファイルに表示するレーンを選択します。

- Show single lane (単一レーンを表示): 単一のレーンを表示します。

表示するレーンを選択するには、そのレーンを解析画像内でクリックする か、あるいは Plot メニュー内に表示されるレーンの番号 ("Lane 1", "Lane 2"など)をクリックします。

注記: Lane + および Lane - ボタンで表示するレーンを切り替える時は、この Show single lane オプションを選択しておく必要があります。

- Show multiple lanes (複数のレーンを表示): このオプションを選択してから 画像内の複数のレーンをクリックすると、クリックした複数のレーンプロファ イルが重ね表示されます。
- Show all lanes (全レーンを表示): 全レーンを重ねて表示します。
- Lane Bitmap (レーンのビットマップを表示): このオプションを選択すると、
 レーンプロファイルの下に、現在選択中のレーンの画像を横向きに表示します。

■ レーンプロファイルの Baseline (ベースライン) メニュー:

このメニューには、バックグラウンド補正を行なうコマンドが表示されます。このメ ニューのコマンドについて詳しくは、「2.4.2.1 バックグラウンドの補正」(2-27ペー ジ)をご覧下さい。

■ レーンプロファイルの Band ID (バンドID) コマンド:

このコマンドは、バンドのラベル(標識)の表示方法、およびバンドの検出方法を 指定する Bands Options (バンドのオプション) ダイアログボックスを表示します。 バンドのラベルの表示方法については、「バンドに任意のラベルを付ける」(2-53 ページ)をご参照下さい。バンドの検出方法については、「レーン・バンド検出 – その他のオプション」(2-12ページ) をご参照下さい。

■ レーンプロファイルの Update (更新) コマンド:

このコマンドをクリックすると、レーンプロファイルの表示を更新します。

■ [Z+]、[Z=]、[Z-] ボタン:

これらのボタンは、レーンプロファイルのグラフを垂直方向に拡大・縮小します。 [Z+]が拡大、[Z-]が縮小、[Z=]が等倍の表示になります。グラフの細部が見にく い時に使用します。

■ [X+]、[X=]、[X-] ボタン:

これらのボタンは、レーンプロファイルのグラフを水平方向に拡大・縮小します。 [X+]が拡大、[X-]が縮小、[X=]が等倍の表示になります。グラフの細部が見にく い時に使用します。

注記: このボタンの動作は、X-Zoom MW Lines (水平方向ズーム時の分子量線) に関係します。詳しくは、2-55ページをご覧下さい。

■ Lane +、Lane - ボタン:

これらのボタンは、Plot メニューで Show single lane (単一レーンを表示) が選択 されている時に、表示するレーンを選択するのに使用します。Lane +/Lane - を クリックすると、表示されるレーンが切り替わります。

注記: これらのボタンは、Plot メニューの Show single lane オプションを選択して からご使用下さい。

■ 谷マーカ:

このマーカはマウスでドラッグでき、バンドのピークの範囲を調節するのに使用します。詳しくは、2-13、2-54、2-56ページをご覧下さい。

2.4.6 表示オプションを使用する

Gel-Pro Analyzer では、画像やグラフ等の表示を細かく設定できます。以下では、例として幾つかの表示設定を行ないます。

 次に、カーソルを解析画像内に入れて右クリックし、コンテキストメニューから Zoom – Zoom 100%を選択します。これで、画像の表示サイズは元に戻りま す。

<レーンに任意のラベル(標識)を付ける>

- 1D-Gel ツールパレットの Lanes (レーン検出) ボタンをクリックして Lanes ダイア ログボックスを開き、Labels (ラベル) ボタンをクリックします。Lane and Band Labels ダイアログボックスが開いたら、以下のように操作します。
- 5. 1番目のレーンの上に表示されている番号にマウスを合わせ、十字カーソルが表 示されたら、クリックします。

注記: この時、レーンのアウトラインの内部をクリックしないように注意して下さい。レーンの上の番号を正確にクリックして下さい。

6. Label (ラベル)欄に、現在のラベル("1")が表示されていますので、これを削除 し、"MARKER"とタイプします。

注記: ラベルに使用できるのは、半角英数文字で15文字までです。

7. OK ボタンをクリックします。

これで、1番目のレーンの上に、"MARKER"と表示されます。

1番目のレーンの ―― ラベルが"MARKER"に 変更されました

>>> 次のステップ「2.5 測定結果を外部へ出力する」(2-57ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】 その他の表示オプション:

■ バンドの横列の測定値をグラフで表示する:

1D-Gel ツールパレットの Results (測定結果) ボタンで Amounts/Mol. Weights (質量/分子量) ウィンドウを開いた状態で、Show (表示) メニューの Row Band Graph (バンド横列のグラフを表示) コマンドを実行します。Row Band Expression (バンド横列の発現) グラフが表示されたら、Amounts/Mol. Weightsウィンドウ内 で、表示したいバンドの横列をクリックして選択します(横列を選択する時は、ウィ ンドウの左端のLanes: Rowsの列に表示される"r1", "r2"等のセルをクリックして 下さい)。

注記: Row Band Graph コマンドは、Packed (詰めて表示)オプション(2-25ページ 参照)の選択時は使用できません。

■ レーンのラベルをレーンの上でなく、下に表示する:

ラベルをレーンの上でなく、レーンの下に表示したいときは、1D-Gel ツールパレットの Lanes (レーン検出) ボタンをクリックして Lanes ダイアログボックスを開き、Labels (ラベル) ボタンをクリックして Lane and Band Labels ダイアログボック スを開きます。このダイアログで、Place label to (ラベルの表示位置) 欄で Bottom (下)を選択してから OK をクリックします。

■ レーンのラベルを削除する:

レーンのラベルを削除するときは、Lane and Band Labels ダイアログボックス(上記参照)を開いた状態で、削除したいレーンの番号を十字カーソルでクリックして 選択してから、Erase (削除) ボタンをクリックします。

■ バンドに任意のラベル(標識)を付ける:

1D-Gel ツールパレットの Bands (バンド検出) ボタンをクリックして Bands ダイア ログボックスを開き、Labels (ラベル) ボタンをクリックします。Lane and Band Labels ダイアログボックスが開いたら、以下のように操作します。

- 1. 解析画像内にカーソルを入れ、ラベルを付けたいバンドのマーカ(+)にカー ソルを合わせて、["]=["]形のカーソルが表示されたらクリックします。
- 2. Label (ラベル) 欄に、表示したいラベルをタイプします(半角英数文字で8文 字まで)。
- 3. OK ボタンをクリックします。

ラベルの表示位置は、Place label to (ラベルの表示位置) 欄で変更できます。 Upper Left (左上)、Upper Right (右上)、Center Above (真上)、Lower Left (左下)、Lower Right (右下) のいずれかの位置を選択できます。

注記: ラベルとして測定値を表示したいときは、解析画像内のバンドをクリックして選択した後、Or display band (バンドの測定値を表示)欄で Mol. Weight (分子量) または Amount (質量)を選択します。

■ バンドに付けた任意のラベルを削除する:

バンドの任意のラベルを削除するときは、バンドの番号を十字カーソルでクリック して選択した後、Erase (削除) ボタンをクリックします。

■ 全バンドのラベルとして、バンドの番号や測定値を表示させる:

1D-Gel ツールパレットの Bands (バンド検出) ボタンをクリックして Bands ダイア ログボックスを開き、Options (オプション) ボタンをクリックして Bands Options (バンドのオプション) ダイアログボックスを開きます。その後、以下のように操作 します。

- バンドのラベルとしてバンドの番号を表示させたい時は、ダイアログの上部 にある Band numbers (バンド番号)オプションを選択し、OK をクリックしま す。
- ラベルとして測定値を表示させたい時は、Molecular Weight (分子量) または Amount (質量) オプションを選択して、OK をクリックします。
- バンドのラベルを表示させたくない時は、None (なし)を選択してから OK を クリックします。

■ 各バンドの範囲を表示させる:

それぞれのバンドの範囲 (バンドの質量、IODの値を測定する時に、値を取り込む範囲)を解析画像内に表示したい時は、1D-Gel ツールパレットの Bands (バンド検出) ボタンをクリックして Bands ダイアログボックスを開き、Options (オプション) ボタンをクリックします。Bands Options (バンドのオプション) ダイアログボックスが開いたら、ダイアログの下部にある Show band extents. (バンドの範囲を表示) オプションを選択し、OK をクリックします。

これで、解析画像内の各バンドを囲む、青い枠が表示されます。

この枠の上辺と下辺をドラッグして、バンドの範囲を変更できます。

注記: バンドを囲む青い枠の上辺と下辺は、Lane Profile ウィンドウに表示される 谷マーカ(2-13、2-56ページ参照)に対応し、ドラッグすると連動します。

■ ラベルの文字色を変更する:

1D-Gel ツールパレットの Preference Views (表示の初期設定) ボタン(下図)をク リックして Data Views (データの表示) ダイアログボックスを開き、Color Palette (カラーパレット) タブで指定します。

- Marker Lane Colors (レーンの色): レーンのアウトラインの色と、レーン番号の色を、レーン毎に指定します。色を変更するには、右側の色表示フィールドをダブルクリックして、「色」ダイアログボックスから色を選択します。
- Band Label Colors (バンドのラベルの色): バンドのラベルの色を、ラベルの 種類毎に指定します。 色を変更するには、右側の色表示フィールドをダブル クリックして、「色」ダイアログボックスから色を選択します。
- Component Colors (各部の表示色): 画像内に表示される各種データのラベル色を、データの種類毎に指定できます。色を変更するには、右側の色表示フィールドをダブルクリックして、「色」ダイアログボックスから色を選択します。

- Color Lane Text (レーン番号を色表示): このオプションを選択すると、レーン番号を色分け表示します。
- ラベルの文字を大きくする:

1D-Gel ツールパレットの Preference Views (表示の初期設定) ボタンをクリック して Data Views (データの表示) ダイアログボックスを開き、View Settings (表示 設定) タブの Large Label Text (大きいラベル文字)を選択します。

■ その他の表示設定:

1D-Gel ツールパレットの Preference Views (表示の初期設定) ボタンをクリック して Data Views (データの表示) ダイアログボックスを開くと、View Settings (表 示設定) タブのオプションで以下の設定が可能です。

- Band Label Position (バンドラベルの位置): この欄で、バンドのラベルの表示位置を指定できます。Upper Left (左上)、Upper Right (右上)、Center Above (真上)、Lower Left (左下)、Lower Right (右下) のいずれかの位置を選択できます。
- Background Lines (バックグラウンド補正線を表示): このオプションを選択すると、バックグラウンドの補正を From Image (値を画像から取得) オプションで行なっている時に、紫色のバックグラウンド補正線(2-30ページ)を画像内に常時表示します。
- Slant Lines (スマイリング補正線): このオプションを選択すると、スマイリン グ補正を行なった時に、黄色のスマイリング補正線(2-22ページ)を画像内 に常時表示します。
- − iso-MW Lines (等分子量線): このオプションを選択すると、画像内に等分子 量線を表示します。

- Well Origin Line (ウェル位置補正線): 1D-Gel ツールパレットの Well Origin ボタンでウェルの位置を補正した場合、補正線を表示します(2-12ページを 参照)。
- X-Zoom MW Lines (水平方向ズーム時の分子量線): このオプションを選択 すると、Lane Profile ウィンドウの [X+] ボタンでレーンプロファイルを水平方 向に拡大表示した時に、レーンプロファイルに表示されている範囲を解析画 像内に表示します。

■ レーンプロファイルのラベル表示を変更する:

Lane Profile ウィンドウ内の表示オプションを変更するには、1D-Gel ツールパレットの Preference Views (表示の初期設定) ボタンをクリックして Data Views (データの表示) ダイアログボックスを開き、View Settings (表示設定) タブの Profile Options (プロファイルのオプション) 欄で指定します。

Band Indicator (バンドの谷マーカ): 谷マーカの表示を変更します。None (なし)、Brackets (角カッコ形)、Dotted Line (点線)、Hatch Pattern (ハッチパターン)のいずれかを選択できます。

Brackets 選択時

Dotted Line 選択時

Hatch Pattern 選択時

いずれの谷マーカも、ドラッグすることでバンドのピークの範囲を変更できま す(2-13、2-54ページを参照)。

Arrows on Peaks (ピーク上に矢印を表示): このオプションを選択すると、
 レーンプロファイル内のピークを示す矢印が表示されます。

Large Label Text (大きいラベル文字): 解析画像内やレーンプロファイル内のラベル(レーン・バンドの番号、数値など)を大きい文字で表示します。

■ 表示設定を保存して再呼び出しする:

ラインプロファイルの表示設定や、ラベルの表示設定の一部は、Data Views (データの表示)ダイアログボックスの下部にある Save (保存) ボタンをクリックす るとファイル (*.vws) に保存でき、Load (ロード) ボタンで再び読み込むことができ ます。

2.5 測定結果を外部へ出力する

Gel-Pro Analyzer では、測定結果データ、グラフ等を外部に出力して利用できます。ここでは例として、測定データをテキストファイルに保存します。

▼ 操作 - 測定結果を外部へ出力する:

Amounts/Mol. Weights (質量/分子量) ウィンドウが画面に開いた状態で、同ウィンドウの File (ファイル) メニューにある Data to File (データをファイルに保存する) コマンドを実行します。

😪 Amounts/Mol.Weights - Slant.tif (1/1)							
<u>F</u> ile	<u>File</u> Show Loads Calibrate Update						
Dat	Data to Output <u>W</u> indow			ion 1	to an	nount	loa
Data to <u>C</u> lipboard			hn			el/I	
Data to <u>F</u> ile							
Append Data to File ³		houn	ก	Lan Imol	в 2 м1		
DD	E to Exc	el		57	7599	(mor	
 DDE <u>O</u> ptions		33	148				

2. Save Table (表のデータを保存する) ダイアログボックスが開いたら、「ファイル 名」欄に"Results"と入力し、「保存」ボタンをクリックします。

Save Table				? X	
(保存する場所(型):	Gelpro4	•	È 💋		
arcache	Morphok Scripts				
Convok	Template				
Hasp Help					ー入力します
🛄 Images					
- (4.2.00					
7717/26(<u>N</u>):	Results -			1条存(5)	
ファイルの推奨(1):]*.txt			キャンセル	
					1
この操作で、測定結果(<mark>ま、</mark> ″Results	.txt″という	名前の)テキスト	ファイル形式
(*.txt)に保存されました。					

保存されたデータは、表計算ソフト、ワープロソフト等へ読み込むことができま す。

>>> 次のステップ「2.6 データベース」(2-63ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】 測定データの出力 – その他のオプション:

Gel-Pro Analyzer では、上記の他にも様々な仕方でデータを外部へ出力することができます。

■ 測定データの出力オプション:

Amounts/Mol. Weights (質量/分子量) ウィンドウに表示される分子量、質量、 IODなどのデータを外部に出力ないし保存する方法は、以下の通りです。

● 測定データを既存のテキストファイルに追記する:

測定データを既存のテキストファイルに追記(アペンド)するには、 Amounts/Mol. Weights ウィンドウの File メニューにある Append Data to File (データをファイルにアペンド) コマンドを実行し、既存のテキストファイル を選択して保存を実行します。測定データは、選択したテキストファイルの 末尾に追記されます。

● 測定データをExcel へ転送する:

1D-Gel ツールパレットの Results (測定結果) ボタンで Amounts/Mol. Weights (質量/分子量) ウィンドウを開き、File (ファイル) メニューにある DDE to Excel (Excel へ DDE 転送) コマンドを実行すると、測定結果のデー タを表計算ソフトの Microsoft Excel へ直接転送できます。このコマンドを実 行する度に、測定結果のデータがワークシート内に貼り付けられます。

- 1回転送する度に、データを下方向へ貼り付けたい場合は、File メニューのDDE Options (DDEのオプション) コマンドを実行して、Append next data set to the bottom オプションを選択します。
- 転送の度に、データを右方向へ貼り付けたいときは、File メニューの
 DDE Options (DDEのオプション) コマンドを実行して、Append next
 data set to the right オプションを選択します。
- 転送の度に、決められた増分でデータの貼り付け位置をずらしていきたいときは、File メニューのDDE Options (DDEのオプション) コマンドを実行し、Increment position for next data set by を選択してから、Row (行)と Col (列)の欄で、増分の行数、列数を指定します。

注記: DDE to Excel コマンドの実行時に、"Could not load Excel. Please check path"というエラーメッセージが表示された場合は、DDE Options コマンドを実行して Dynamic Data Exchange Options (ダイナミックデータ交換のオプション) ダイアログボックスを開き、Path (パス) 欄の Browse (参照) ボタンをクリックして、Excel の正しいパスを指定して下さい。

● 測定データをテキストファイルに保存する:

測定データをファイルに保存するには、Amounts/Mol. Weights (質量/分子 量) ウィンドウの File (ファイル) メニューにある Data to File (データをファイ ルに保存する) コマンドを実行します。ファイルは、テキストファイル形式 (*.txt) で保存されます。

注記:測定データを既存のテキストファイルに追記(アペンド)するには、File メニューにある Append Data to File (データをファイルにアペンド) コマンド を実行し、既存のテキストファイルを選択して保存を実行します。測定デー タは、選択したテキストファイルの末尾に追記されます。

● 測定データをクリップボードにコピーする:

測定データをクリップボードにコピーするには、Amounts/Mol. Weights (質量/分子量) ウィンドウの File (ファイル) メニューにある Data to Clipboard (データをクリップボードへコピー) コマンドを実行します。 クリップボードへコ ピーしたデータは、ワープロソフトや表計算ソフト等に貼り付けることができます。

● 測定データをプリンタに出力する:

測定データをプリンタで印刷するには、Amounts/Mol. Weights (質量/分子 量) ウィンドウの File (ファイル) メニューにある Print (印刷) コマンドを実行 します。「印刷」ダイアログボックスが開いたら、必要な設定を行ない、OK ボ タンで印刷を実行します。測定データは、罫線付きで印刷されます。

■ レーンプロファイルの出力オプション:

レーンプロファイルのグラフ、およびグラフの元データ(グラフを作成する元となった数値データ)を保存するには、以下の手順に従って下さい。

● レーンプロファイルをファイルに保存する:

レーンプロファイルの元データは、テキストファイルに保存が可能です。保存するには、Lane Profile ウィンドウの File (ファイル) メニューにある Data To File (データをファイルに保存する) コマンドを実行します。ファイルは、テキストファイル形式 (*.txt) で保存されます。 保存されるデータの内容は、File (ファイル) メニューにある Output Options (出力のオプション) コマンドで指定できます。このコマンドを実行すると Lane Profile Output Options (レーンプロファイルの出力オプション) ダイア ログボックスが表示され、以下のオプションを選択できます。

- Legend (凡例): このオプションを選択すると、測定データの表の凡例
 (画像名、測定データの単位、項目名など)が出力されます。
- Molecular Weight (分子量): このオプションを選択すると、出力される データの左端に、分子量が表示されます。
- Baseline (ベースライン): バックグラウンドの補正(減算)を行なっている
 場合、このオプションを選択すると、バックグラウンドの値が一緒に出 力されます。
- Subtract baseline (ベースラインを減算): バックグラウンドの補正(減 算)を行なっている場合、このオプションを選択すると、グラフの元デー タからバックグラウンドの値を減算した後の値が出力されます。
- Single lane (単一レーン): このオプションを選択すると、現在解析画像 内で選択中のレーンに対応するデータのみを出力します。

注記: データを既存のテキストファイルに追記(アペンド)するには、File メニューにある Append Data to File (データをファイルにアペンド) コマ ンドを実行し、既存のテキストファイルを選択して保存を実行します。 測定データは、選択したテキストファイルの末尾に追記されます。

レーンプロファイルをクリップボードにコピーする:

レーンプロファイルでは、グラフと数値データの両方をクリップボードへ転送できます。

- グラフをクリップボードにコピーするには、Lane Profile ウィンドウの File (ファイル)メニューにある Graph To Clipboard (グラフをクリップ ボードへコピー) コマンドを実行します。クリップボード内のグラフは、 ベクトルデータを扱えるワープロソフトや表計算ソフトなどへの貼り付 けが可能です。
- グラフの元データをクリップボードにコピーするには、Lane Profile ウィンドウの File (ファイル)メニューにある Data To Clipboard (データをクリップボードへコピー) コマンドを実行します。クリップボード内のデータは、ワープロソフトや表計算ソフトなどへの貼り付けが可能です。

出力するデータの内容は、File (ファイル)メニューにある Output Options (出力のオプション) コマンドで指定できます。詳しくは、上の 「レーンプロファイルをファイルに保存する」の項をご覧下さい。 ● レーンプロファイルを Excel に転送する:

レーンプロファイルの元データは、Microsoft Excel に転送できます。詳しく は、「測定データをExcel へ転送する」(2-58ページ)をご覧下さい。

● レーンプロファイルをプリンタに出力する:

レーンプロファイルのグラフをプリンタで印刷するには、File (ファイル)メニ ューにある Print Graph (グラフを印刷する) コマンドを実行します。「印刷」 ダイアログボックスが開いたら、必要な設定を行ない、OK ボタンで印刷を 実行します。

- 解析画像の出力オプション:
 - 解析画像をクリップボードヘコピーする: 解析画像と、その上に表示されているオーバーレイ(レーンやバンドのラベル、マーカ、測定値、各種補正線など)を一緒にクリップボードへコピーするには、以下の手順を実行して下さい。
 - 1D-Gel ツールパレットの Report (レ ポート)ボタンをクリックして、Report Generator (レポートジェネレータ)を起 動します(右図)。

レポートジェネレータは、解析画像と測 定値の表・グラフなどをレイアウトして報 告書を作成するツールです。

	🕄 1D-Gel 🛛 🗙
	Rotate
	Lanes
	Well Origin
	Bands
	Background
	M.W. Standard
	Slant
	Results
	Preference Views
クリックします ―	Reports
	Save

 Report Generator ウィンドウの File (ファイル) メニューから New (新規 作成) コマンドを実行し、New Report (新規レポート) ダイアログボック スを開きます(下図)。

- 3. New Template (新規テンプレート) ボタンをクリックして、新規レポート ウィンドウ("untitled...")を開きます。
- Insert (挿入) メニューから Image with Overlay (オーバーレイ付き画像) コマンドを実行します。

これで、解析画像がオーバーレイ(ラベル、マーカなど)と一緒に、レ ポートウィンドウに貼り付けられます。

注記:このとき、画像の代わりに灰色の矩形領域(プレースホルダ)が 貼り込まれた場合は、Layout(レイアウト)メニューの Show Data (データを表示)を実行して下さい。

次に、貼り付けられたオーバーレイ付きの画像をクリックし、画像の四隅にハンドル(■)が付いた状態で、Edit(編集)メニューの Copy (コピー) コマンドを実行します。これで、解析画像がオーバーレイと共にクリップボードへコピーされました。

注記: 必要であれば、Report Generator ウィンドウの File メニューにある Save (上書き保存) コマンドを実行して、レポートを保存します(ここではレポートを保存せずに Report Generator を終了しても構いません)。

ベクトルデータを扱えるワープロソフト、表計算ソフトなどを起動し、貼り付け先の文書を開いてから、「貼り付け」コマンドを実行して、解析画像を文書内に貼り付けます(下図)。

● 解析画像をプリンタに出力する:

解析画像をプリンタで印刷するには、Gel-Pro Analyzer の File (ファイル)メ ニューから Print (印刷) コマンドを実行します。

Print ダイアログボックスが開いたら、必要に応じて Setup (セットアップ)ボ タンで印刷設定を行ない、以下のオプションを選択してから、Print ボタンを クリックして印刷を実行します。

- Fit To Page (最大サイズ): このオプションを選択すると、用紙に合わせ て最大サイズで印刷します。
- Print Overlay (オーバーレイを印刷): このオプションを選択すると、 オーバーレイ(画像内のラベル、レーンのアウトラインなど)を解析画 像と一緒に印刷します。非選択にすると、解析画像のみを印刷しま す。

2.6 データベース

Gel-Pro Analyzer には Access® ベースのデータベースが内蔵されており、解析画像 と解析結果を、測定オプションの設定値やコメントと共に保存し、再呼び出しすること ができます。

2.6.1 データベースに測定結果を保存する

測定の終了後に、測定結果をデータベースに保存する手順は以下の通りです。

▼ 操作 – データベースに測定結果を保存する:

 測定が終了した状態で、1D-Gel ツールパレットの Save (保存) ボタンをクリック します。

	⊴3 1D-Gel 🛛 🗙
	Rotate
	Lanes
	Well Origin
	Bands
	Background
	M.W. Standard
	Slant
	Results
	Preference Views
	Reports
クリックします	Save

Experiment (実験) ダイアログボックスが開きます。

	Experiment X
	Experiment ID: OK
	Create Date/Time: 2001-07-06 15:16:50
	Modified Date/Time: 2001-07-06 15:16:50 New
	Title: DNA Test 01 Open
必要なデータを←	Experimenter: Tanaka Save
半角英数文字で	Function Type: DNA analysis Delete
八月・禰未しより	Description: Training
	Show this
	dialog at start-up
	T E
	Image Status: <no attached="" image=""></no>
	F Archive all open images into database.

ここで、必要に応じて Title (タイトル) 欄や Description (説明) 欄にコメントを入力・編集できます。

注記:

- Experiment ダイアログボックスに入力した文字データ(実験データ)は、
 実験データをデータベースから呼び出す時の、検索文字列になります。
- 文字データは全て半角英数文字で入力して下さい。日本語の全角文字は、全角の数字やアルファベットを含めて入力しないで下さい(日本語は、たとえ入力できても、保存後に文字化けを起こす可能性があります)。
- 2. Save New (新規保存) ボタンをクリックします。これで、データベースが起動し、解 析画像と解析結果がデータベースに登録されます。

Save Experiment	×	
Experiment 14	Close	
Create Date/Time: 2001-07-06 19:02:53		
Modified 2001-07-06 19:02:53	Save New	クリックします
Title: DNA Test 01	Open	

データベースのウィンドウに、登録された解析画像のサムネイル(ミニチュア画像)が表示されます。

3. 以上で解析のセッションが全て終了しました。

Gel-Pro Analyzer の File (ファイル) メニューにある Exit (終了) コマンドを実行して、Gel-Pro Analyzer を終了します。

>>> 次のステップ「2.6.2 データベースから測定結果を開く」へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】 データベース - 注意事項:

- データベースに保存できるのは、ディスクに保存済みの画像ファイルのみです。
 従って、解析画像がまだ1度も保存されていないときは、Save New ボタンをクリックすると同時に Save File As (ファイルを別名で保存) ダイアログボックスが表示されます。この場合は、ファイルの保存先、ファイルの種類、ファイル名を指定して、画像をファイルに保存して下さい。
- データベースに保存されるデータの実体は、解析画像のサムネイル (ミニチュア 画像)と解析画像ファイルへのリンク情報、および実験データ (Experiment ダイ アログボックスに入力した文字データ、測定時のオプション設定)です。解析画像 自体がデータベースに保存されるわけではありませんので、解析画像のファイル 名を変更したり、ファイルを削除ないし移動すると、データベースから解析画像を 呼び出せなくなりますので、ご注意下さい。また、測定結果のデータそれ自体を データベースに保存しているのではなく、実験時に使用した設定値のみを保存し ています。これにより、実験データを再呼び出しした時に、保存された設定に基 づいて再度自動測定を行ない、前回の測定時と同一の結果を算出するようにな っています。このため、解析画像に画像処理を加えると、測定結果も変化します のでご注意下さい。

2.6.2 データベースから測定結果を開く

ー旦データベースに保存された解析画像や測定結果は、データベースから再呼び出 しして、再度実験を行なうことができます。

データベースから実験データを呼び出す手順は以下の通りです。

▼ 操作 – データベースから測定結果を開く:

<解析画像のファイル名から開く方法>

1. Gel-Pro Analyzer を起動します。

- Search (検索) ダイアログボックスの Field (フィールド) 欄で、Title (タイトル)を選 択します。
- 4. Operator (演算子) 欄で"="を選択します。
- 5. List (一覧表示) ボタンをクリックします。

	Search	
Title	Search Parameters:	
=を選択	Eisld: Operator: Search Eor:	
	Title Qancel	
しまり		クロック
		しまり

 Find (検索対象を選択して下さい) ダイアログボックスで、開きたい実験データの タイトル(ここでは"DNA Test 01")をクリックして選択します。

Find test001 curved lanes demo DNA Test 01 DNA Test 02 dot blot demo	┃ ── DNA Test 01を 選択! ます
Dot Blot Test 01 molecular weight demo overview demo single band demo test01	シ クリックします
Insert Close	

- 7. Insert (挿入) ボタンをクリックします。
- 8. Search ダイアログボックスの Search For (検索対象) 欄に"DNA Test 01"と表示 されたことを確認してから、Find (検索実行) ボタンをクリックします。

Search				
Search Parame	eters: <u>O</u> perator	: Search <u>F</u> or:	E	ind
Title	-	DNA Test 01		ancel します
		List		

以上の操作で、解析画像"slant.tif"と実験データが一緒に呼び出されます。

- レーンプロファイルを開きたい時は、1D-Gels メニューの Show Graph (レーンプロファイルを表示) コマンドを実行します。
- 測定結果を表示したいときは、1D-Gel ツールパレットの Results (測定結果)ボ タンをクリックします。

>>> 以上で、「第2章 1次元ゲルの解析」の操作練習は全て終了です。

最後に Gel-Pro Anlyzer を終了するときは、File (ファイル)メニューの Exit(終了)コマンドを実行して下さい。

以下は、ご参考用の詳細情報です。

【参考】 データベース – その他のオプション:

■ データベースの表示を切り替える:

データベースでは、ギャラリ表示(全画像を一覧表示するモード)と単一画像表示 (画像を1枚ずつ表示し、画像の属性情報やコメントなどを並べて表示するモー ド)の2つの表示を切り替えられます。切り替えるには、データベースのツール バーからギャラリ表示ボタンまたは単一画像表示ボタンを選択します。

単一画像表示では、実験データを入力・編集できます。

- ギャラリ表示のサムネイル(ミニチュア画像)のサイズを変更する: これを行なうには、データベースのツールバーにある次のボタンを使用します。
 - [-]: サムネイルを縮小します。
 - [1]: サムネイルをデフォルトのサイズにします。
 - [+]: サムネイルを拡大します。

■ データベースに登録した実験データを削除する:

実験データを削除するには、データを上記の手順(「2.6.2 データベースから測定 結果を開く」、2-65ページ)で開いた後に、Experiment (実験) ダイアログボックス の Delete (削除) ボタンをクリックします。 警告のメッセージ ("You are about to delete the current experiment. Are you sure?":「現在表示中の実験データを本 当に削除しますか?」) が表示されたら、「はい」をクリックして削除を実行します。

注記:実験データの削除はアンドゥできませんので、ご注意下さい。

■ データベースに全画像を登録する:

1D-Gel ツールパレットの Save (保存) ボタンで実験データを保存する時、通常 は解析画像1枚のみがデータベースに登録されますが、画面に開いている全画 像を登録したいときは、Experiment (実験) ダイアログボックスの Archive all open images into database (表示中の全画像をデータベースに登録) オプション を選択します。

■ データベースに画像のみを登録する:

実験データを登録せずに、画像のみをデータベースに登録したいときは、次の2 通りの手順のいずれかで行なって下さい。

- 現在画面に表示中の画像をデータベースに登録するときは、Gel-Pro Analyzer の File(ファイル)メニューの Save to Image Database (画像デー タベースに登録) コマンドを実行します。Image Archiving (画像のアーカイ ブ) ダイアログボックスで OK をクリックすると、登録されます。
- 現在画面に表示していない画像ファイルをデータベースに登録するときは、 まず Gel-Pro Analyzer のツールバーにあるデータベースボタン())でデー タベースを起動し、次にデータベースウィンドウの Database メニューにある Add Records (レコードを追加) コマンドを実行します。Open File (ファイル を開く) ダイアログボックスでデータベースに登録したい画像ファイルを選択 し、「開く」ボタンをクリックすると登録されます。複数のファイルを一括して 登録したいときは、[Ctrl]キーを押しながら登録したいファイルをクリックする と、複数のファイルを一度に選択できます。

注記: いずれの場合も、データベースに登録できるのは、既にディスクに保存済 みの画像ファイルのみです。一度もディスクに保存されていない画像をデータ ベースに登録しようとすると、ファイルの保存ダイアログが表示されますので、画 像を一旦ディスクに保存して下さい。

>>> 以上で、第2章の練習は全て終了です。次のステップとして、「第3章 ド ットブロットの解析」へ進みましょう。

第3章 ドットブロットの解析

測定内容:

Gel-Pro Analyzer は、ドットブロットの定量を行なえます。測定可能なデータは以下の通りです。

- ー ドットの質量
- ー ドットの積分光学濃度(IOD)

解析画像の要件:

- グレイスケール画像 (Gray Scale 8/12/16および Floating Point)であること。
 画像がカラー画像である場合は、測定を行なう前に、あらかじめ Edit (編集) メニューにある Convert To (変換) コマンドまたは Color Channel (色成分) コマンド にてグレイスケール画像にしておく必要があります。
- ・質量の較正 (calibration)の基準が存在すること。質量の測定では、画像内に写
 っている複数のドット(基準ドット)の質量が既知である必要があります。

操作の概要:

ここでは、主に以下の練習を行ないます。

- Gel-Pro Analyzer を起動し、Experiment (実験) ダイアログで基本設定を行なう (3-2ページ)
- 画像を開く(3-4ページ)
- 画像の前処理を行なう(画像の傾きを補正する)(3-5ページ)
- 測定領域を限定する/ドットを検出する(3-6ページ)
- ドットの質量を較正する(3-15ページ)
- 質量を測定する(3-19ページ)
- 積分光学濃度 (IOD) を測定する (3-21ページ)
- 相対量を算出する(3-22ページ)
- 測定結果をデータベースに保存する(3-26ページ)

この操作の大部分は、画面に表示される Dot Blots (ドットブロット) ツールパレットの ボタンを、上から下へ順にクリックすることで実行できます。

🕾 Dot Blots 🗙	
Rotate	【傾き補正】 画像を回転させ、傾きを補正します (P. 3-5)
Dots -	-【ドット検出】 画像内のドットを検出します (P. 3-7)
Calibrate -	-【較正】 (ア. 3-15)
Mass / IOD	-【質量/IOD】 測定結果を表示します (P. 3-19)
Save -	【保存】保存します (P. 3-26)

ツールパレットは、Experiment (実験) ダイアログボックスで選択した Function Type (解析のタイプ) によって切り替わります(1-10ページをご参照下さい)。

この練習には、約30分かかります。

3.1 実験データの入力

まず最初の操作として、実験データを入力する必要があります。操作手順は以下のようになります。

▼ 操作 - 実験データの入力:

Gel-Pro Analyzer をまだ起動していない場合は、Windows の「スタート」メニューの「プログラム」にある「Gel-Pro Analyzer 4.5」の「Gel-Pro Analyzer」をクリックして、Gel-Pro Analyzer を起動します。Gel-Pro Analyzer のアプリケーションウィンドウがアクティブになったら、以下の操作を開始できます。

Gel-Pro Analyzer が起動すると、通常は Experiment (実験) ダイアログボックス が自動的に開きます。

注記: Gel-Pro Analyzer の起動時に Experiment ダイアログボックスが開かない ときは、File (ファイル) メニューの Experiment コマンドを実行して開いて下さい。

Experiment ダイアログボックスで、測定の内容に合わせて基本設定を行ない、 同時に実験データを入力する必要があります。 2. Title (タイトル) 欄に、実験のタイトルを半角英数文字で入力します。ここでは、例 として"Dot Blot Test 01"と入力します。

注記: Gel-Pro Analyzer では、原則として日本語の文字を使用できません。半角 英数文字のみをご使用下さい。

- Experimenter (実験者) 欄に、実験者の名前を入力します。上の図では、例として"Tanaka"と入力しています。
- Function Type (解析のタイプ)欄で、Dot blot analysis (ドットブロット解析)を選 択します。

注記: Function Type の指定は、必ず行なう必要があります。

- 5. Description (説明) 欄に、"Training"と入力します。
- 6. OK ボタンをクリックして Experiment ダイアログボックスを閉じます。

注記:実験データついて詳しくは、2-4ページの「【参考】 実験データについて」を ご覧下さい。

>>> 次のステップ「3.2 画像を開く/画像の前処理」(3-4ページ)へ進んで 下さい。

3.2 画像を開く/画像の前処理

次のステップとして、解析対象となる画像ファイルを Gel-Pro Analyzer 上に開き、必要 に応じて前処理を行ないます。この操作の概要は以下の通りです。

画像を開く:

解析画像は、予め保存した画像ファイルから開いたり、スキャナ(B-1ページを参照)、カメラなどの画像取り込みデバイスから取り込んで開くことが可能です。

画像の前処理:

画像の前処理とは、測定に先立って、測定目的のために画像を最適化する処理 です。ドットブロット解析では、画像に写っているドットの列を、画像の辺と平行に しておくと、ドットのグリッドを手動で作成する時などに便利です。

この他、必要に応じて、画質の改善、画像の較正などの処理を行なうこともあります。

▼ 操作 - 画像を開く/画像の前処理:

<画像を開く>

- File メニューの Open (開く) コマンドを実行して Open File (ファイルを開く) ダイア ログボックスを開きます。
- 2. Gel-Pro Analyzer のアプリケーションフォルダの中にある"Images"フォルダ(通常 は"C:¥Gelpro45¥Images")を開きます。
- "Dotblot.tif"ファイルを選択し、「開く」ボタンをクリックして、解析画像"Dotblot.tif" を開きます。

この画像を見ると、ドットの列が全体的にやや左へ傾いているのがわかります。 このままでも測定は可能ですが、ドットのグリッドを手動で作成する場合などで は、ドットの列に傾きがない方が便利です。このため、以下の処理で画像の傾き を補正します。 <画像の傾きを補正する>

4. Dot Blots ツールパレットの Rotate (傾き補正) ボタンをクリックします。

🖃 Dot Blots 💌	
Rotate —	― クリックします
Dots	
Calibrate	
Mass / IOD	
Save	

画像内に補正用のグリッド線(格子)が表示され、同時に Rotate ダイアログボック スが表示されます。

5. 画像内にカーソルを入れ、カーソルが曲がった矢印の形(^{⑤)}になったら、マウス をドラッグしてグリッド線を回転させ、グリッド線とドットの列を平行にします。

矢印(↑↑↑)が一 画像の上辺を指す ようにします

このとき、グリッド線の矢印 (↑↑↑)が、必ず画像の上辺側を向くようにして下さい。この矢印の指す方向が、傾き補正後の画像の上辺になります。

 グリッド線がドットの列と平行になったら、Rotate ダイアログボックスの Close Original Image (処理後に元の画像を閉じる) オプションが選択されていることを 確認して、OK ボタンをクリックします。

	🔿 Rotate image 180 dei
	🔿 Rotate image 90 deg. clockwise
	🔿 Rotate image 90 deg. counterclock
選択します ――――	— 🔽 Close Original Image
クリックして回転を ―― 実行します	Cancel

これで画像の傾きが補正され、補正後の画像が新規画像("untitled...")として画面上に開きます。

Gel-Pro Analyzer スタートアップマニュアル ー【ドットブロットの解析】

回転後の画像が 新規画像("untitled") として画面に残り ます(元の画像は 自動的に閉じます)

注記:

- 補正後は、元の画像("Dotblot.tif")が自動的に閉じることに注意して下さい。これ 以降、解析は補正後の新規画像("untitled...")で行なうことになります。
- このように、解析を新規画像で行なう場合は、解析の終了時(Dot Blots ツール パレットの Save ボタンで、測定結果をデータベースに保存する時など。3-26 ページを参照)に、解析画像をディスクに保存する必要があります("Workspace '...' has not been saved. You need to save it to a file.":「ファイル'...'は未保存で す。ファイルに保存する必要があります」と表示されますので、OK をクリックして 保存します)。

>>> 次のステップ「3.3 測定領域の限定-ドットの検出」へ進んで下さい。

3.3 測定領域の限定 - ドットの検出

次のステップとして、解析画像内の測定領域(定量を行なう対象領域)を限定する必要 があります。この処理の概要は次の通りです。

矩形AOI で、画像内の測定対象領域を囲む:

スミアのひどい画像では、画像内に矩形AOIを作成して、測定対象領域(ドットが 写っている領域)のみを囲んでおくと、以降のドットの自動抽出が容易になります (測定対象領域のみを予め囲んでおくことで、測定に含めたくないスミアの部分を 除外できます)。

• 定量するドットの領域を検出する:

この処理は、Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリックして Dots ダイアログボックスを開き、Find Dots (ドット検出実行) ボタンをクリックする ことで自動的に行なうか、あるいは同ダイアログボックスの Make Grid (グリッド 作成) ボタンでグリッドを手動作成し、そのグリッドを画像に適用することで行な います。 上記の処理を行なう操作手順は、以下の通りです。

▼ 操作 – 測定領域の限定 – ドットの検出:

<測定対象をAOIで囲む>

 ドットを自動検出する場合は、最初に画像内の測定対象領域を予めAOI で囲ん でおくと、検出の成功率が高くなります。AOI を作成するには、ツールバーの矩 形 AOI ボタンをクリックして選択し、解析画像内をドラッグして、全ドットを囲む AOI を作成します。

AOIを作成するときは、できる限りドットの部分のみを囲み、画像の周辺部のスミ アなどの部分を避けるようにします。場合により、矩形 AOI よりも自由曲線 AOI (A-11ページを参照) で囲んだ方が良いこともあります。

<ドットを自動検出する>

 Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリックして、Dots ダイア ログボックスを開きます。

3. Find dots/slots (ドット/スロットの検出) 欄の Fill Grid Holes (グリッドの隙間を埋める) オプションを選択します。

注記: この設定は、ドットの列の中に欠落ドット(シグナルがないドット)があった 時でも、そのドットが存在するものとして検出する、という意味です。

 Find dots/slots 欄の Fixed threshold (%) [固定閾値(%)]オプションを選択し、右の 欄のスピンボタンをクリックして、数値を「10」に設定します。

注記:スピンボタンをクリックする代わりに、欄に直接「10」とタイプして、リミットチェックボタン図をクリックしても構いません。

Fixed threshold (%)欄の数値を変更すると、2値化によって画像内の領域が選択 され、数秒間だけ赤く表示されます。ドットの部分のみが赤く表示されるように設 定する必要があります。この欄の数値は、シグナルの薄いドットを検出する時は 低い値に、濃いドットを検出する時は高い値に設定します。「Dotblot.tif" 画像に は薄いドットが含まれているので、「10」のような低い値に設定すると、ほぼ全て のドットを検出できます。

- 5. Dots/Slots shape & size (ドット/スロットの形状と大きさ) 欄で、Circular Dots (円 形のドット)を選択します。
- 6. Dots/Slots shape & size 欄の Diameter (直径)を「35」に設定します。
- Dots/Slots shape & size 欄の Filter area +/- (%) [指定直径比±(%)]オプションを 選択し、右の欄内の数値を「50」に設定します。

注記: この設定は、Diameter 欄で指定した直径(35ピクセル)の±50%の領域の みをドットとして検出し、それ以外の領域はドットと見なさない、という意味です。 これにより、微細なゴミや、大きなスミアの領域がドットとして検出されてしまうの を防ぎます。Filter area +/-(%)オプションを選択せずにドットの自動検出を行な うと、ドットでない領域をドットとして誤認識する確率が高くなります。

 1.で作成した AOI が画面に表示されていることを確認してから、Find Dots (ドット 検出実行) ボタンをクリックします。

これで、画像内の(AOI で囲まれた領域の)ドットが自動検出され、各ドットを囲むドット枠(〇)が表示されます。

- 実際にドットが存在している場合、その枠は赤で表示されます。
- ドットが存在していない、ないしシグナルが薄い箇所のドット枠は、黄色で 表示されます。
- ここで、ドット枠の位置が実際のドットとずれている、ドット枠の大きさが不適当、 不要な領域がドットとして誤認識されて検出されている、正しく検出されていない ドットがある、等の場合は、以下の手動で手動補正できます。
- ドット枠の位置を修正する:
 - a. Dots ダイアログボックスの Lock Dots (ドット枠を固定) オプションが選択 されている場合は、クリックして非選択にします。

🖽 Dots	×
<u>F</u> ile	
Use left mouse button to individual dot.	o select and move
Lock Dots	🔽 Show Labels
Background correctio	Backgnd. Options

- b. ドット枠を直接マウスでドラッグして、位置を修正します。
- ドット枠の大きさを変更する:
 - a. Dots ダイアログボックスの Diameter (直径)欄の数値を変更します。この 数値を変更すると、全ドット枠の直径が一律に変更されます。
- 不要なドット枠を削除する手順:
 - a. Dots ダイアログボックスの Delete (削除) ボタンをクリックします。

	'		·	
-Grid				
Rows: 7		Col:	8	•
Scale Down			Scale l	lp
	Make	Grid		
Add Delete	Del.	All :	Sort	ок
$\neg \smile$,			

Delete Dot (ドットを削除) ダイアログボックスが表示されます。カーソルを 画像内に入れます。

- b. 削除したいドット枠にカーソルを重ね、カーソルが十字形になったら、クリ ックして削除します。
- c. 不要なドット枠を全て削除したら、Delete Dot ダイアログボックスの OK ボ タンをクリックして、ダイアログを閉じます。
- 検出されなかったドットを検出させる手順:
 - a. Dots ダイアログボックスの Add (追加) ボタンをクリックします。

		,		·	
-Grid					
Rows:	7	÷	Col:	8	÷
	,	<u> </u>			<u> </u>
30	ale Dow	î -		ocale L	p
		Make	Grid		
	、				
Add	Delete	Del.	All	Gort	ОК
	/				

Add Dot (ドットを追加) ダイアログボックスが表示されます。カーソルを画 像内に入れます。

b. 検出されなかったドットの位置にカーソルを置き、カーソルが十字形になったらクリックしてドット枠を追加します。

c. 必要なドットを全て追加し終わったら、Add Dot ダイアログボックスの OK ボタンをクリックします。

注記:

- 不要なドット枠を削除したり、新しいドット枠を追加すると、ドット枠に振られている番号の順序が乱れることがあります。[この番号は、Dot Blots ツールパレットの Mass/IOD (質量/IOD) ボタンで測定結果のウィンドウを表示し、Show (表示)メニューの List (一覧表示) オプションを選択した時に表示されます。] この番号を正しく振り直すには、Dots ダイアログボックスのSort (並べ替え) ボタンをクリックします。
- ドット枠を修正中に、修正の操作をアンドゥしたい時は、Dots ダイアログボックスの File (ファイル) メニューにある Load Previous Pattern (直前のグリッドをロードする)を実行して下さい。
- 10. 全てのドットに枠が正しく表示されたら、Dots ダイアログボックスの OK ボタンを クリックして、ダイアログを閉じます。

これでドットの検出は終了です。

注記:

- このように作成したドットの枠は、全体(グリッド)としてファイルに保存し、再利用が可能です。その手順は、下記の「グリッドを保存・再呼び出しする」(3-13ページ)をご覧下さい。
- 検出されたドットのシグナルから、バックグラウンド(画像の背景)の値を減算する ことができます。バックグラウンドのオプションについては、下記の「バックグラウンド補正オプション」(3-14ページ)をご覧下さい。
- >>> 次のステップ「3.4 ドットの質量の較正」(3-15ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】ドットの検出 – その他のオプション:

画像によっては、上記のようなドットの自動検出を行なうよりも、手動でグリッドを作成し、それを適用する方が効率よく作業できる場合があります。

グリッドは、一旦作成した後は保存と再利用が可能です。

それぞれの手順は以下の通りです。

■ 手動でグリッドを作成する:

ドットを自動検出するのではなく、予めドットのグリッドを手動で作成して、そのグ リッドを画像に適用することによりドットを認識させる場合は、以下のように操作し ます。

- a. 解析画像を開き、Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリ ックし、Dots ダイアログボックスを開きます。
- b. 解析画像に写っているドットの横列数と縦列数を調べ、Grid (グリッド作成) 欄の Rows (横列数)と Col. (縦列数) にそれぞれの値を入力します。

上図は、横列数=7列、縦列数=8列と入力した例です。

c. Make Grid (グリッド作成実行) ボタンをクリックします。これで、解析画像内 に指定した縦横列数でドット枠のグリッドが作成されます。

注記:解析画像内に、既にドット枠やグリッドが存在している場合は、Make Grid ボタンをクリックした時に警告("Program will reposition the dots.":「ドットを再配置します」)が表示されますので、OK をクリックしてグリッドの作 成を実行します。

この後、ドット枠の位置と大きさを修正する必要があります。

● グリッド全体の位置と大きさを修正する:

グリッド全体を修正する時は、以下のように操作します(個々のドットの間隔 は全て均等になります)。

- a. Dots ダイアログボックスの Lock Dots (ドット枠を固定) オプションを選 択します。 グリッド全体を囲む青色の枠が表示されます。
- b. 青色の枠の四辺をドラッグして、グリッドの位置と大きさを調整します。

ドット枠の位置を個別に修正する:

ドットを個別に移動する必要がある時(ドットの間隔を均等にしたくない場合) は、以下のように操作します。

- a. Dots ダイアログボックスの Lock Dots (ドット枠を固定) オプションを非 選択にします。
- b. ドット枠を直接マウスでドラッグして、位置を修正します。
- c. 位置を修正し終わったら、Lock Dots オプションを再び選択します。
- ドット枠の大きさを変更する:
 - a. Dots ダイアログボックスの Diameter (直径) 欄の数値を変更します。 この数値を変更すると、全ドット枠の直径が一律に変更されます。
- グリッドを保存・再呼び出しする:
 - a. 作成したグリッドをファイルに保存するには、Dots ダイアログボックス の File (ファイル) メニューから Save Dot Pattern (ドット枠のグリッドを 保存する)を実行します。Save Setting (設定を保存) ダイアログボック スで保存場所を指定し、ファイル名を入力してから「保存」ボタンをクリ ックします。グリッドは、グリッドファイル(*.grd)として保存されます。
 - b. 保存済みのグリッドをファイルから呼び出すには、Dots ダイアログボッ クスの File (ファイル) メニューから Load Dot Pattern (ドット枠のグリッ ドをロードする)を実行します。Load Setting (設定をロード) ダイアログ ボックスで開きたいグリッドファイル(*.grd)を選択し、「開く」ボタンをクリ ックして開きます。

解析画像上に開いたグリッドは、上記の手順で位置や大きさを修正して下 さい。

■ バックグラウンド補正オプション:

ドットのシグナルから、画像のバックグラウンド(背景)の値を減算することができ ます。このようなバックグラウンド補正を行なうには、Dots (ドット検出) ダイアログ ボックスで Background correction (バックグラウンド補正) オプションを選択し、 次に Backgnd. Options (補正オプション) ボタンをクリックして Background Correction Wizard (バックグラウンド補正ウィザード) ダイアログボックスを開き、 以下のオプションのいずれかを選択します。

- Use the background correction method in version 3.0 to guarantee results consistent with those obtained with that version (バージョン3.0で算出され た結果との整合性を取るために、3.0と同じ方法でバックグラウンド補正を行なう): このオプションを選択すると、Gel-Pro Analyzer バージョン 3.0/3.1と同じ方法で補正を行ないます。
- Outline clear of the dot. (ドット枠がドットと接触していない): このオプション を選択すると、各ドット枠(ドットを囲む、色付きのアウトライン)の線上のピク セル値をバックグラウンド値として取り込み、これをそのドットのシグナルか ら減算します。このオプションを使用できるのは、ドット枠がドット自体と重な っていない場合です。このオプションを使用する時は、Dots ダイアログボッ クスの Diameter の値を調節してドット枠の径を十分に大きくとり、各ドット枠 内にドットが完全に収まるようにして下さい。

ドット枠がドットと接触し ていない例:

全ドットがこのような 状態であれば、Outline clear of the dot オプショ ンを使用できます

ドット枠がドットと接触し ている例:

このようなドットが多い 場合は、Outline close to the dot オプションを 使用します

Outline close to the dot. (ドット枠がドットと近接している): このオプションを 選択すると、各ドット枠の線上のピクセル値を取り込み、その最低値をバッ クグラウンド値に設定して、この値をそのドットのシグナルから減算します。 このオプションを使用するのは、ドット枠の一部がドットに重なっている場合 です。通常、このオプションがデフォルトになっています。特に、ドットが密に 配列されている場合は、このオプションを選択しておくと便利です。

今回の操作練習では、この設定にしておきます。

 Background dots. (バックグラウンドドットを使用): このオプションは、解析 画像内にコントロール用のバックグラウンドドット(シグナルの写っていないド ット領域)が存在している場合に使用します。このオプションを使用するに は、Background dots. オプションを選択してから、Select Background dots (バックグラウンドドットを選択)ボタンをクリックします。Turn Background Dots On/Off (バックグラウンドドットの選択/非選択)ダイアログボックスが 開いたら、解析画像内にカーソルを入れます。 カーソルが十字形になったら画像内のバックグラウンドドットをクリックして 選択します。選択されたドットの枠は紫色になります。

ー旦バックグラウンド ドットに指定したドットを非選択にしたい時は、そのドットをもう一度クリックします。

上記のいずれかのオプションを選択したら、Background Correction Wizard ダイ アログボックスの OK ボタンをクリックしてダイアログを閉じます。これで、選択し た補正オプションが画像に適用されます。

3.4 ドットの質量の較正

ドットブロットの測定値を質量 (マス)として算出する場合は、質量の較正を行なう必要 があります。

較正を行う条件として、解析画像内に、既知の質量を持つドット(基準ドット)が存在して いる必要があります。

以下の操作では、上から1列目の横列の1番目のドットの質量が 12 ng、同じ列の5番 目のドットが 40 ng、6番目のドットが 20 ng、3番目の横列の1番目のドットが 3 ngである ことが既知のデータとして与えられていて、それに基づいて較正するものとします。

上記の処理を行なう操作手順は、以下の通りです。

▼ 操作 ー ドットの質量の較正:

 解析画像内の全ドットが検出された状態で、Dot Blots ツールパレットの Calibrate (較正)ボタンをクリックして、次の Calibrating amounts from known dots (既知のドットで質量を較正)ダイアログボックスを開きます。

注記:ここで、上のダイアログの代わりに Amount Calibration というダイアログが 開いた場合は、一旦 Dot Blots ツールパレットの Mass/IOD をクリックして測定 結果の表を開き、Calibrate メニューの Allow Multiple Calibrations オプションを非 選択にしてから、再度ツールパレットの Calibrate をクリックして下さい。

- ダイアログボックスの下部にある Amounts in (質量の単位) 欄に"ng"と入力し、 チェックボタン図をクリックします。
- 3. Add/Change (追加/変更) ボタン(上図)をクリックします。

画像内の全ドットに「*」印が付きます。

解析画像内にカーソルを入れ、一番上の横列の1番目のドットをクリックします。
 IOD (積分光学濃度)欄に数値(実測値)が表示されます。

5. Mass Amount (質量)欄に、「12」と入力してから、リミットチェックボタン⊠をクリッ クします。

これで、入力した質量の値が下の欄に表示されます。

ダイアログボックス上部のグラフには、較正曲線(検量線)が表示されます。

- Eの3.~5.と同様の手順で、一番上の横列の5番目のドットの値を、40 ng に較正して下さい。
- 7. 上の3.~5.と同様の手順で、一番上の横列の6番目のドットの値を、20 ng に較正 して下さい。
- 2. 上の3.~5.と同様の手順で、上から3番目の横列の1番目のドットの値を、3 ng に 較正して下さい。

9. Fitting Method (あてはめ方式) 欄で 2nd odr Lagrange (2次ラグランジュ)を選択 します。

較正曲線が変形します。

- OK をクリックして Calibrating amounts from known dots ダイアログを閉じます。
 上記の操作で、画像内のドットの質量が、4つのドットの既知の質量に基づいて 較正されました。
- >>> 次のステップ「3.5 定量 測定結果(質量/IOD/相対量)の算出」(3-19ページ)へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】ドットの質量の較正 – その他のオプション:

Calibrating amounts from known dots (既知のドットで質量を較正) ダイアログボックス では上記の操作の他に以下の処理が可能です。

■ 較正曲線グラフを対数表示にする:

これを行なうには、Calibrating amounts from known dots ダイアログボックスの Log. display (対数表示) オプションを選択します。

■ 較正曲線グラフを拡大・縮小表示する:

グラフをZ軸方向へ拡大するには、[z+] ボタンをクリックします。Z軸方向へ縮小 するには、[z-] ボタンをクリックします。グラフを元の大きさに戻すには、[1:1] ボ タンをクリックします。 ■ Fitting Method (あてはめ方式):

この欄で選択可能な較正曲線のあてはめ関数は、以下の通りです。

- -1st odr Lagrange (1次ラグランジュ) -1st odr polynomial (1次多項式)
- -2nd odr Lagrange (2次ラグランジュ) -2nd odr polynomial (2次多項式)
- -3rd odr Lagrange (3次ラグランジュ) -3rd odr polynomial (3次多項式)
- 一旦入力した基準ドットの値を変更する:

Add/Change ボタンで入力した値を変更するには、変更したい値を Calibrating amounts from known dots ダイアログの欄で選択してから、Mass Amount (質量) 欄に新しい値を入力し、Add/Change (追加/変更) ボタンをクリックします。

■ 一旦入力した基準ドットの値を削除する:

これを行なうには、削除したい値を Calibrating amounts from known dots ダイア ログボックスの欄で選択してから、Delete (削除) ボタンをクリックします。

■ 較正データをファイルに保存する:

これを行なうには、Calibrating amounts from known dots ダイアログボックスの File (ファイル) メニューから Save Calibration Curve (IOD + Mass + Dot #) [較正 曲線(積分光学濃度+質量+ドット番号)を保存する] コマンドを実行し、Save Setting (設定を保存)ダイアログでファイル名を入力してから、「保存」ボタンをク リックします。 較正データは、スタンダードファイル (*.std) に保存されます。

■ 較正データをファイルから再呼び出しする:

これを行なうには、Calibrating amounts from known dots ダイアログボックスの File メニューにある、以下のいずれかのコマンドを実行します。

Load Calibration Curve (IOD + Mass) [較正曲線(積分光学濃度+質量)を ロードする]: このコマンドは、スタンダードファイル(*.std)に保存されている 積分光学濃度と、較正済みの質量の値を、そのままロードして現在の解析 画像に適用します。従って、このコマンドは、質量の較正に使用した解析画 像と、現在使用中の画像が同一である時に使用して下さい。

本コマンドを実行後、スタンダードファイルを選択し、「開く」ボタンをクリック してファイルを開いて下さい。

Load Standard Dots (Mass + Dot #)[基準ドット(質量+ドット番号)をロードする]: このコマンドを実行すると、スタンダードファイル(*.std)から基準ドットの位置と、その質量のみをロードします。積分光学濃度の値は、スタンダードファイルから読み出されずに、画像から直接取得されます。従って、このコマンドは、質量の較正に使用した解析画像とは別の画像に、スタンダードフ

ァイルの較正データを適用したい時に使用します(基準ドットの位置が全て 一致している必要があります)。

本コマンドを実行後、スタンダードファイル(*.std)を選択し、「開く」ボタンをクリックしてファイルを開いて下さい。

■ 複数の較正データセットを使用する:

Dot Blotsツールパレットの Mass /IOD ボタンで表示される測定結果ウィンドウ で、Calibrate メニューにある Allow Multiple Calibrations (複数の較正データを使 用する)オプションを選択してから Calibrate Mass コマンドを実行すると(または ツールパレットの Calibrate ボタンをクリックすると)、複数の較正データセットを 使用できます。複数の較正データの使用について詳しくは、2-39ページの「複数 の較正データセットを使用する」をご覧下さい。

3.5 定量 - 測定結果(質量/IOD/相対量)の算出

解析画像内のドットが全て検出されたら、ドットを定量できます。ドットについて算出で きるのは、以下の値です。

- ・ 質量(マス):

 質量を算出するには、上記の手順(3-15ページ参照)で較正を行なう必要があります。
- 積分光学濃度 (IOD)
- 相対量

上記の測定を行なう手順は、以下の通りです。

3.5.1 質量(マス)の算出

始めに、ドットの質量(マス)を算出します。質量は、上の3.4で行なった較正に基づい て算出されます。

▼ 操作 - 質量の算出:

 Dot Blots ツールパレットの Mass/IOD (質量/IOD) ボタンをクリックして、測定結 果ウィンドウを開きます。 Gel-Pro Analyzer スタートアップマニュアル ー【ドットブロットの解析】

🖃 Dot Blots 💌	- (Calibrated Mass (ng)							
Rotate	Hile Show	Update S ¥Col Row	ing <u>H</u> elp	2	3	4	5	6
Dots	43.465491	1	12	41.7145	40.9561	31.1821	40	20
Calibrate	Min:	2	8.61942	35.1728	38.9222	17.1059	39.0125	15.5902
/ IOD	2.3162701	3	3	28.3630	43.4655	23.5109	33.9651	7.56143
Mass / IOD	Meno	4	3.46208	23.6947	26.2505	5.57194	27.7309	4.48255
Save	14117504	5	2.56518	15.4292	17.9312	4.47025	21.8871	3.53038
0000	14.117094	6	2.32070	5.26721	5.29609	2.46374	9.22035	2.46195
	Std. Dev.:	7	2.31627	2.61444	2.62905	2.33575	3.57449	2.32225
	13.089697							
クリック	Sum: 790.58525							
します								

測定結果のウィンドウが開きます

注記: このとき、測定結果ウィンドウは、Calibrated Mass (較正済みの質量)というウィンドウ名になっているはずです。もし Integrated Intensity (積分強度、輝度総和)というウィンドウ名が表示されるときは、質量の較正を行なっていない可能性があります。この場合は、上記の「3.4 ドットの質量の較正」(3-15ページ)の手順で、解析画像に較正を適用して下さい。

Show (表示) メニューで Calibrated Mass (較正済みの質量) が選択されていることを確認します。他のオプションが選択されているときは、Calibrated Mass を選択します。

	≊® Ca	alibrated Mass (ng)			
	<u>F</u> ile	Show Update Samplin	ng <u>H</u> elp)	
Calibrated Massが	Max: 43.46!	IOD Ma⊻imum OD		2	3
		^d Minim <u>u</u> m OD	12	41.7145	
	Min	✓ <u>C</u> alibrated Mass	8.61942	35.1728	
深圯されていることを	2.316	; Back <u>e</u> round Values が	3	28.3630	
送れてれていることを	Maan	Match	3.46208	23.6947	
確認します	1411	· List	2.56518	15.4292	
	14.11		2.32070	5.26721	

これで、各ドットの質量の値が表示されます。

	ାର Calibrated I	Mass (ng)						
	File Show	<u>U</u> pdate Sa	ampling <u>H</u> elp	1				
	Max	¥Col Row	1	2	3	4	5	6
	43.465491	1	12	41.7145	40.9561	31.1821	40	20
	/ Min: 💦	2	8.61942	35.1728	38.9222	17.1059	39.0125	15.5902
6-L = I	2.3162701	3	3	28.3630	43 4655	235109	33.9651	7.56143
統計——	Mean	4	3.46208	23.69	皆景(フス)の測定	古 27.7309	4.48255
データ	14117504	5	2.56518	15.42			21.8871	3.53038
, ,	14.117094	6	2.32070	5.26721	5.29609	2.46374	9.22035	2.46195
	Std. Dev.:	7	2.31627	2.61444	2.62905	2.33575	3.57449	2.32225
	13.089697							
	Sum:							
	190.58525		•					•

測定結果ウィンドウの左端には、測定値の統計データ (Max: 最大値、Min: 最小値、Mean: 平均値、Std. Dev.: 標準偏差、Sum: 合計) が表示されます。

- 各ドットの質量を、解析画像内のドットと同じ配列で表示したい時は、Show メニ ユーの Rows and Columns (縦横列で表示)オプションを選択します。通常はこの 表示になっています(上図)。
- 各ドットの質量を、ドットの通し番号順に表示したい時は、Show メニューの List (一覧表示)オプションを選択します。

Gel-Pro Analyzer スタートアップマニュアル ー【ドットブロットの解析】

注記: このオプションを選択すると、解析画像内のドット枠に、通し番号が表示されます。この通し番号が乱れている場合(順番通りに並んでいない場合)は、Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリックし、Dots ダイアログボ ックスの Sort (並べ替え) ボタンをクリックして、番号を振り直します(3-26ページ を参照)。

 ドットの質量の代わりに、ドットのバックグラウンドの値を算出したい時は、Show メニューの Background Values (バックグラウンド値)を選択します。

>>> 次のステップ「3.5.2 積分光学濃度(IOD)の算出」へ進んで下さい。

3.5.2 積分光学濃度 (IOD) の算出

次に、ドットの積分光学濃度、最大・最小光学濃度を算出します。

- ▼ 操作 積分光学濃度の算出:
- Dot Blots ツールパレットの Mass/IOD (質量/IOD) ボタンをクリックして、測定結 果ウィンドウを開きます。
- 2. Show (表示) メニューから IOD (積分光学濃度) オプションを選択します。

これで、各ドットの積分光学濃度の値が表示されます。

Lite Show Update Sampling Help 植分光学濃度の 値が算出されます Maximum 0D Maximum 0D (abbrated Mass) 317801 999552 875657 636380 植が算出されます Maximum 0D Maximum 0D (abbrated Mass) 317801 999552 875657 636380 1005 900455 494524 963866 497644 542.20 175612 Maximum 0D Maximum 0D 1005 10654 561179 900435 494524 Match 963866 497644 542.20 175612 150777 166234 167143 251455 Std.t * Dives and Columns 393435 412084 425563 4.96147 2768 Options_ graph 17414538 1		N Integrated Intensity (IOD)				_ 🗆 ×
IODを選択すると、 積分光学濃度の 値が算出されます ^{Max}		File Show Update Samplin	∉… <u>H</u> elp			
	IODを選択すると、— 積分光学濃度の 値が算出されます	Max: Maximum OD Maximum OD	317.801 252.343 70.4554 96.3966 36.4394 1.50777 .393435	2 899.572 722.847 561.179 497.544 373.296 166.234 41.2064	3 875.657 816.846 960.435 542.30 409.313 167.143 42.5563	4 636.390 397.774 494.524 175.612 139.158 25.1455 25.1457 4.96147

- 3. 各ドットの積分光学濃度を、解析画像内のドットと同じ配列で表示したい時は、 Show メニューの Rows and Columns (縦横列で表示) オプションを選択します。
- 各ドットの積分光学濃度を、ドットの通し番号順に表示したい時は、Show メニューの List (一覧表示)オプションを選択します。

注記: このオプションを選択すると、解析画像内のドット枠に、通し番号が表示されます。この番号が乱れている場合(順番通りに並んでいない場合)は、Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリックし、Dots ダイアログの Sort (並べ替え) ボタンをクリックして、番号を振り直します(3-26ページ参照)。

- 積分光学濃度の代わりに、最大光学濃度(Maximum OD)の値を算出したい時 は、Show メニューの Maximum OD を選択します。
- 6. 最小光学濃度(Minimum OD)の値を算出したいときは、Show メニューの Minimum OD を選択します。

>>> 次のステップ「3.5.3 相対量の算出」へ進んで下さい。

3.5.3 相対量の算出

最後に、相対量の算出を行ないます。相対量の算出では、特定のドットの列を基準に 設定する必要があります。

▼ 操作 - 相対量の算出:

- Dot Blots ツールパレットの Mass/IOD (質量/IOD) ボタンをクリックして、測定結 果ウィンドウを開きます。
- 上記の「3.5.1 質量(マス)の算出」または「3.5.2 積分光学濃度(IOD)の算出」のいずれかを実行して、相対量の元になるデータ(質量または積分光学濃度)を表示させます。
- Show (表示) メニューの Options (オプション) をクリックして、Rows and Columns Options (縦横列表示のオプション) ダイアログボックスを開きます。

- 4. 例えば、解析画像内の一番左のドットの縦列を基準ドット列に設定して、他のドットの値をその基準からの相対値として算出するときは、The value of the corresponding dot in column... (相対量の基準となるドット縦列の番号)オプションを選択してから、その右の欄に「1」と入力します。
- 5. 基準ドットの値を「1」に設定する場合は、その下にある Ratio (比率) オプションを 選択してから、OK ボタンをクリックします。

測定結果のウィンドウ内で、一番左のドット縦列の値が全て「1.0」になり、他のド ットの値はその基準からの相対値になります。

ାର୍ମ Integrated Intensity (Ratio)								
<u>F</u> ile <u>S</u> how	Update Sa	ampling	<u>H</u> elp					
Max	¥Col Row	1	\cap	2	3	4		
960.43466	1		1.0	2.8	2.8	2.0		
Min:	2		1.0	2.9	3.2	1.6		
.39343516	3		1.0	8.2	13.6	7.0		
Mean	4		1.0	5.2	5.6	1.8		
910.07900	5		1.0	10.2	11.2	3.8		
310.97390	6		1.0	110.3	110.9	16.7		
Std. Dev.:	7		1.0	104.7	108.2	12.6		
276.87740			V					
Sum: 17414.538	38 1番目の縦列を基準(=1)に設定した例							

- 例えば、解析画像内の、上から2番目の横列のドットを基準ドット列に指定する場合は、Show メニューの Options (オプション)をクリックしてRows and Columns Options (縦横列表示のオプション)ダイアログボックスを開き、The value of the corresponding dot in row ...(相対量の基準となるドット横列の番号)オプションを 選択してから、その右の欄に「2」と入力します。
- 基準ドットの値を「100」に設定する場合は、その下にある Percent (%) オプションを選択してから、OK ボタンをクリックします。

測定結果のウィンドウ内で、上から2番目のドット横列の値が全て「100.0」になり、 他のドットの値はその基準からの相対値になります。

🕼 Integrated Intensity (%)								
<u>F</u> ile <u>S</u> how	<u>U</u> pdate	Sampling	<u>H</u> elp					
Max	¥Col Row	1		2		3	4	
960.43466	1		125.9		124.4	107.2	160.0	1
Min:	2		100.0		100.0	100.0	100.0	\vdash
.39343516	3		27.9		80.4	117.6	124.3	ΓI
Money	4		38.2		68.8	66.4	44.1	
Mean-	5		14.4		51.6	50.1	35.0	
310.97390	6		0.6		23.0	20.5	6.3	
Std. Dev.:	7		0.2		5.7	5.2	1.2	
276.87740 Sum: 17414.538			2番目	の横列	河を基準	隼(=100)に	設定した例	
		•					۶.	

>>> 次のステップ「3.6 データベースに画像を保存する」(3-26ページ)へ 進んで下さい。 以下は、ご参考用の詳細情報です。

【参考】測定結果の算出 – その他のオプション:

■ マッチング:

ドット間のマッチングを調べるには、Dot Blots ツールパレットの Mass/IOD (質量 /IOD) ボタンをクリックして測定結果のウィンドウを開き、Show (表示) メニューに ある Match (マッチング) オプションを選択します。このオプションでは、指定した 基準ドット列(ドットの縦列ないし横列)に相当するドットが、他の列にも存在する かどうかを表示します。

ାର୍ମ Calibrated	Mass (%)					_ 🗆 ×
<u>F</u> ile <u>S</u> how	<u>U</u> pdate	Sampling	<u>H</u> elp				
Max:	¥Col Row	1	2	3	4	5	
43.465491	1		1	1	1	1	1
Min:	2		-1	-1	1	-1	1
2.3162701	3		-1	-1	0	-1	-1
Manni	4		-1	-1	-1	-1	-1
Mean.	5		-1	-1	-1	-1	-1
14.081077	6		-1	-1	-1	-1	-1
Std. Dev.:	7		-1	-1	-1	-1	-1
13.038753							
Sum:							
788.54029		•					•

各セルに表示される数値と色の関係は次の通りです。

- 基準ドット列のドットと等量のドット: 緑、 1
- 基準ドット列のドットよりも大きい値のドット:赤、 0
- 基準ドット列のドットよりも小さい値のドット: 青、-1

マッチングの設定は、測定結果のウィンドウの Show (表示)メニューにある Options (オプション) コマンドを実行し、Rows and Columns Options (縦横列表示 のオプション) ダイアログボックスを開いて行ないます。

- ドットの縦列を基準ドットにする場合は、The value of the corresponding dot in column...(相対量の基準となるドット縦列の番号)欄で基準ドット列を指 定します。例えば、この欄で「1」を指定すると、1番目のドット縦列(最も左側 の縦列)内の各ドットと比べて等量のドットが、他の縦列に存在するかどうか を判定します。
- ドットの横列を基準ドットにする場合は、The value of the corresponding dot in row …(相対量の基準となるドット横列の番号)欄で基準ドット列を指定し ます。例えば、この欄で「1」を指定すると、1番目のドット横列(最も上の横 列)内の各ドットと比べて等量のドットが、他の横列に存在するかどうかを判 定します。
- 色分け表示を行なうには、Color coding (色分け) オプションを選択します。

特定のドットが基準ドットと等分子量であるかどうかを判断する許容度は、
 Values are equivalent if … % [等量と見なす許容範囲 (%)] 欄で指定します。

■ ドットのグループ化を行なう:

解析画像内の複数のドットがリプリケート(複製)である場合、それらをグループ化し、グループ毎に測定値を平均して算出することができます。

グループ化を行なうには、Dot Blots ツールパレットの Mass/IOD (質量/IOD)ボ タンをクリックして測定値のウィンドウを開き、Sampling (サンプリング) コマンドを 実行します。Sampling ダイアログボックスが開いたら、グループ化したいドットの 横の個数を Column (横の個数)欄に、縦の個数を Rows (縦の個数)欄にそれ ぞれ入力します。

注記: ドットの列の縦横の個数は、Column および Rows 欄で指定した数値で割 り切れる必要があります。例えば解析画像内のドットが横に8個並んでいる場 合、Column 欄に「3」と指定すると割り切れず、正しく処理されません。

ドットのグループ化を行なった後は、測定結果のウィンドウに表示される測定値 が、各グループの平均値となります(ドット毎の値ではありません)。

■ 測定結果をグラフで表示する:

測定結果のウィンドウの Show (表示) メニューから Graph (グラフ) コマンドを実 行すると、画像内の各ドットの値をグラフに表示します。 データの分布を見るとき に使用します。

注記: このグラフの横軸に表示されている数字は、各ドットの番号です。この番号 に対応する番号を解析画像内に表示するには、測定結果ウィンドウの Show メ ニューの List (一覧表示) オプションを選択します。

解析画像内の番号が乱れている場合(順番通りに並んでいない場合)は、Dot Blots ツールパレットの Dots (ドット検出) ボタンをクリックし、Dots ダイアログボ ックスの Sort (並べ替え) ボタンをクリックして、番号を振り直して下さい。

グラフ自体、もしくはグラフの元データを外部へ出力する時は、グラフのウィンド ウの File (ファイル)メニューにあるコマンドを使用します。これらのコマンドにつ いては、レーンプロファイルの出力についての説明 (2-59ページ) をご参照下さ い。

■ 測定結果を再計算する:

測定結果のウィンドウの表示が乱れたときは、ウィンドウの Update (更新) コマンドを実行して下さい。

■ 測定結果を外部へ出力する:

Dot Blots ツールパレットの Mass/IOD (質量/IOD) ボタンで表示される測定結果 ウィンドウの File (ファイル)メニューには、測定結果を外部に出力するコマンドが あります。これらのコマンドについては、「2.5 測定結果を外部へ出力する」(2-57 ページ)をご参照下さい。

3.6 データベースに測定結果を保存する

測定の終了後に、測定結果をデータベースに保存する手順は以下の通りです。

▼ 操作 – データベースに測定結果を保存する

1. 測定が終了した状態で、Dot Blots ツールパレットの Save (保存) ボタンをクリックします。

Experiment (実験) ダイアログボックスが開きます。ここで、必要に応じて Title (タ イトル)欄や Description (説明)欄にコメントを入力・編集できます。

注記:

- Experiment ダイアログボックスに入力した文字データ(実験データ)は、 実験データをデータベースから呼び出す時の、検索文字列になります。
- 文字データは全て半角英数文字で入力して下さい。日本語の全角文字 は、全角の数字やアルファベットを含めて入力しないで下さい。
- 2. Save New (新規保存) ボタンをクリックします。これで、データベースが起動し、解 析画像と解析結果がデータベースに登録されます。

データベースのウィンドウに、登録された解析画像のサムネイル(ミニチュア画 像)が表示されます。

注記: ここで"Workspace '...' has not been saved. You need to save it to a file." (「ファイル'...'は未保存です。ファイルに保存する必要があります)と表示された ら、OK ボタンをクリックして、画像をファイルに保存して下さい。

 以上でドットブロット解析のセッションは終了しましたので、Gel-Pro Analyzer の File (ファイル)メニューにある Exit (終了) コマンドを実行して、Gel-Pro Analyzer を終了します。

注記: データベースの使用法について詳しくは、「2.6 データベース」(2-63ページ) をご参照下さい。

>>> 以上で、「第3章 ドットブロットの解析」の操作練習は全て終了です。 次のステップとして、「第4章 コロニーカウンティング」へ進みましょう。

第4章 コロニーカウンティング

測定内容:

Gel-Pro Analyzerのコロニーカウンティング・ツールを使用すると、菌を培養したシャーレの画像内にあるコロニーを自動カウントできます。コロニーカウンティングで測定できるデータは以下の通りです。

- コロニーの個数 (Count)
- コロニーの面積 (Area)、直径 (Diameter)、周囲長 (Perimeter) など若干のパラ メータ

本章では、Gel-Pro Analyzer に付属のサンプル画像を使用して、コロニーの個数を自動カウントする手順を練習します。

解析画像の要件と操作の概要:

以下の練習では、例としてサンプル画像の"Colony.tif"を使用しますが、濃度測定 ツールで測定する解析画像は、以下の要件を満たしている必要があります。

- グレイスケール画像 (Gray Scale 8/12/16および Floating Point) であること。
 画像がカラー画像である場合は、測定を行なう前に、あらかじめ Edit (編集) メニューの Convert To (変換) コマンドや Color Channel (色成分) コマンドにてグレイスケール画像にしておく必要があります。
- コロニーの部分と背景の部分に、ある程度のコントラストがあること。
 コロニーと背景のコントラストが非常に弱い場合は、自動カウントできないことがあります。

ここで行なう操作練習の概要は、以下の通りです。

- Gel-Pro Analyzerを起動し、Experiment ダイアログで基本設定を行なう(4-2ページ)
- 画像を開く(4-4ページ)
- オプションの設定を行なう(4-5ページ)
- 画像を平坦化する(4-9ページ)
- 測定範囲を限定する(4-10ページ)
- 画像を2値化してコロニーを抽出する(4-11ページ)
- 自動カウントを実行し、測定結果を表示する(4-12ページ)
- 測定結果をデータベースに保存する(4-15ページ)

この操作の大部分は、画面に表示される Colony Counting (コロニーカウンティング) ダイアログボックス(下図)のボタンやコマンドを使用することで実行できます。

	🗄 R Colony Counting	
Colony Counting	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>M</u> easure <u>I</u> mage	
ダイアログボックス	Intensity Range Selection Current Range (0128) Manual Ranges. Automatic Dark Colonies Automatic Bright Colonies	Options Select Area Filters Count Auto Find
	Measure Colonies Apply Ranges Add Count In Range: 53 Delete Close	Save

Colony Counting ダイアログボックスは、Experiment ダイアログボックスの Function Type 欄で Colony counting を選択するか、あるいは Gel-Pro Analyzer の Tools (ツー ル) メニューで Colony Counting (コロニーカウンティング)を選択することで表示されま す (次ページをご参照下さい)。

この練習には、約30分かかります。

4.1 実験データの入力

まず最初の操作として、実験データを入力する必要があります。操作手順は以下のようになります。

▼ 操作 – 実験データの入力:

Gel-Pro Analyzer をまだ起動していない場合は、Windows の「スタート」メニューの「プログラム」にある「Gel-Pro Analyzer 4.5」の「Gel-Pro Analyzer」をクリックして、Gel-Pro Analyzer を起動します。Gel-Pro Analyzer のアプリケーションウィンドウがアクティブになったら、以下の操作を開始できます。

Gel-Pro Analyzer が起動すると、通常は Experiment ダイアログボックスが自動的に開きます。

Experiment ダイアログ— ボックス (ここに実験 データを入力します)	Speriment Experiment Experiment Create Date/Time 2001-07-24 11:30.45 Nodified Diav/Time 2001-07-24 11:30.45 Taile: Experimenter: Experimenter: Function Type: Colony counting Decorptor:	X OK New Open Save Oecte
	Image Status: «No Image Attached» I Archive all open images into database.	Show this dialog at start-up

注記: Gel-Pro Analyzer の起動時に Experiment ダイアログボックスが開かない ときは、File メニューの Experiment コマンドを実行して開いて下さい。

Experiment ダイアログボックスで、測定の内容に合わせて基本設定を行ない、 同時に実験データを入力する必要があります。

Title 欄に、実験のタイトルを半角英数文字で入力します。ここでは、例として "Colony Counting Test 01"と入力します。

注記: Gel-Pro Analyzerでは、原則として日本語の文字を使用できません。半角 英数文字のみをご使用下さい。

- 2. Experimenter 欄に、実験者の名前を入力して下さい。上の図では、例として <sup>
 </sup>
 "Tanaka"と入力しています。
- 3. Function Type 欄で、Colony counting (コロニーカウンティング)を選択します。

選択すると同時に、Colony Counting (コロニーカウンティング) ダイアログボック スが画面に 開きます。

- 4. Description 欄に、"Training"と入力します。
- 5. OK ボタンをクリックして Experiment ダイアログボックスを閉じます。

注記:実験データについて詳しくは、2-4ページの「【参考】実験データについて」 をご覧下さい。

>>> 次のステップ「4.2 画像を開く」(4-4ページ) へ進んで下さい。

4.2 画像を開く

次のステップとして、解析対象となる画像ファイルを Gel-Pro Analyzer 上に開きます。 画像は、予め保存した画像ファイルから開いたり、スキャナ (B-1ページを参照)、カメ ラなどの画像取り込みデバイスから取り込んで開くことが可能です。

▼ 操作 – 画像を開く:

- File (ファイル) メニューの Open (開く) コマンドを実行して Open File (ファイルを 開く) ダイアログボックスを開きます。
- 2. Gel-Pro Analyzer のアプリケーションフォルダの中にある"Images"フォルダ(通常 は"C:¥Gelpro45¥Images")を開きます。
- 3. "Colony.tif"ファイルを選択し、「開く」ボタンをクリックして、"Colony.tif"ファイルを 開きます。

この解析画像はグレイスケール画像で、明るい背景の中にシャーレが写っており、その中に測定対象のコロニーが黒い点のように見えます。

また、この画像にはシェーディング(輝度のムラ)があります。シャーレの中心部 分が明るく、周辺部はやや暗くなっています。

以下の操作では、この解析画像内のコロニーをカウントします。

>>> 次のステップ「4.3 オプションの設定」(次ページ)へ進んで下さい。

4.3 オプションの設定

次に、測定のオプション設定を行ないます。手順は以下のようになります。

▼ 操作 – オプションの設定:

Colony Counting (コロニーカウンティング) ダイアログボックスの Manual (手動抽出) オプションを選択します。

注記: このオプションは、解析画像内のコロニーの色と背景の色との関係を手動 で指定する場合に使用します(この操作は、「4.6 画像を2値化してコロニーを抽 出する」で行ないます)。

2. Measure Colonies (コロニーの測徴を行なう) オプションを非選択にします。

同時に、Apply Ranges (選別レンジを適用)オプションも非選択の状態になります。

注記: このように設定するのは、この練習ではコロニーのカウントのみを行なうためです。コロニーについて面積などの測定を行なったり、測定結果に基づいてコロニーの選別を行なうときは、これらのオプションを選択しておく必要があります (4-6ページを参照)。

 Colony Counting ダイアログボックスの Options (オプション) ボタンをクリックして Colony Counting Options (コロニーカウンティングのオプション) ダイアログボック スを開き、Outline Style (アウトラインの形式) 欄で Filled (塗りつぶし)を選択し、 Label Style (ラベルの形式) 欄で Object # (オブジェクトの番号)を選択します。

Gel-Pro Analyzer スタートアップマニュアル ー【コロニーカウンティング】

Image Options Select Area Filters	~クリック します	Colony Counting Options Display Options Image: Class 1 million Outline Style Filled Label Style Object # million
Count Auto Find Save		Label Color: Blue
al Count: 53		
Close		Smoothing: JU 🚖

4. 同じダイアログボックスの Pre-Filter (予め選別)オプションを選択します。

注記: このオプションは、選別レンジ (4-8ページ参照)を使用したときに、コロ ニーの通し番号が非連続になるのを防ぐために選択します。ここでは選別レンジ を使用していないので、本来この設定は必要ありませんが、通常はこの Pre-Filter オプションを選択しておくことをお勧めします。

5 同じダイアログボックスの Fill Holes (穴を埋める) オプションを選択し、OK ボタン をクリックして Colony Counting Options ダイアログボックスを閉じます。

>>> 次のステップ「4.4 画像を平坦化する」(4-9ページ) へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】その他のオプション設定:

上記4.3の操作では、コロニーのカウントのみを行なうため、測徴の設定オプションを 全て非選択にしています。カウントのみでなく、面積などの測定を行なう場合や、測定 結果に基づいてコロニーの選別を行なう時は、以下のように設定します。

■ コロニーの面積などを測定する(測徴を行なう)場合:

これを行なうには、Colony Counting ダイアログボックスの Measure Colonies (コ ロニーの測徴を行なう) オプションを選択し、次に Colony Counting ダイアログボ ックスの Filters (選別フィルタ) ボタンをクリックして、Select Measurements (測定 項目) ダイアログボックスを開きます。

このダイアログボックスの左にある Measurements (測定項目)欄で、測定したい 項目を選択します。

選択可能な項目は以下の通りです。

- Area (面積): 各コロニーの面積です。
- ー Aspect (楕円長短軸比): 各コロニーの相当楕円の長軸と短軸の比です。

- Area/Box (四角形面積比): 各コロニーの面積と、コロニーの外接四角形の 面積比です。
- Density Lum (平均輝度): 各コロニーの平均輝度です。
- Angle (角度): 各コロニーの相当楕円の長軸が、画像の基準軸に対して何 度傾いているかを測定します。

画像の基準軸は通常は画像のY軸に一致しますが、Gel-Pro Analyzer の File (ファイル) メニューの Calibration (較正) - Spatial Calibration (空間較 正) コマンドで Angle Offset (角度オフセット)の較正を行っている場合は、 Angle Offset で指定した角度が基準軸となります。

- Axis (major) (楕円の長軸): 各コロニーの相当楕円の長軸の長さです。
- Axis (minor) (楕円の短軸): 各コロニーの相当楕円の短軸の長さです。
- ー Diameter (ave) [直径(平均)]: 各コロニーの平均直径です。
- Perimeter (周囲長): 各コロニーの周囲長(外周)です。
- Roundness (真円度): 各コロニーの真円度です。真円度は、[周囲長²÷(4 × π × 面積)]で算出されます。
- Cluster (クラスタ内個数): 複数のコロニーが凝集して1個としてカウントされている場合、この測定項目を選択すると、凝集している部分(クラスタ)に含まれているコロニーの個数を推定します。

必要な測定項目を選択したら、OKボタンをクリックします。測定は、Colony Counting ダイアログボックスの Count (カウント実行) ボタンをクリックした時点で 行なわれます(4-12ページを参照)。

注記: 測定値をピクセル単位でなく実寸(mm、µmなど)で算出させたいときは、 画像に予め空間較正をかけておく必要があります。空間較正については、「付録 C 空間較正」(C-1ページ)をご覧下さい。

■ 測定結果に基づいてコロニーの選別を行なう場合:

これを行なうには、Colony Counting ダイアログボックスの Measure Colonies (コ ロニーの測徴を行なう) オプションと Apply Ranges (選別レンジを適用) オプショ ンを選択し、次に Colony Counting ダイアログボックスの Filters (選別フィルタ) ボタンをクリックして、Select Measurements (測定項目) ダイアログボックスを開 きます。

このダイアログボックスの中央にある Filter Ranges (選別レンジ) 欄で測定項目 を選択し、その下の Start (最小) および End (最大) 欄で測定値を限定します。

例えば、Filter Ranges 欄で Area (面積)を選択してから Start に「10」、End に 「200」と入力すると、面積が 10 ~ 200 のコロニーのみをカウントおよび測定の 対象とし、それ以外のコロニーは測定対象から除外します。

この機能を利用すると、自動カウント時にコロニー以外の微細なゴミ等が一緒に カウントされてしまうのを防ぐことができます。

選別レンジの設定を複数の測定項目について行なうと、測定対象のコロニーを 「絞り込む」ことができます。例えば次の図のように設定すると、面積(Area)が10 ~200で、かつ平均輝度が0~30のコロニーのみを測定対象として抽出します。

Select Measurements			×
Measurements:	Filter Ranges:		Density Lum
Area Aspect Area/Box Density Lum Angle Axis (major) Axis (minor) Diameter (ave) Perimeter Roundness Cluster	Area Density Lum	10 200 0 30	Average Optical Density for intensity) of colony.
			Measure
Select <u>A</u> II	Start: 0	▲	<u>Filter Colonies</u>
Select <u>N</u> one	End: 30		OK

設定が終了したら、OKボタンをクリックします。選別は、Colony Counting ダイア ログボックスの Count (カウント実行) ボタンをクリックした時点で行なわれます (4-12ページを参照)。 選別レンジを設定してカウントを行なった場合、カウント実行後に Colony Counting ダイアログボックスの In Range (レンジ内)欄に表示されるカウント数 が、選別後のコロニー数になります。これに対し、Total Count (カウント合計)欄 の数値は、選別レンジを適用する前の合計カウント数です。

4.4 画像を平坦化する

上の4.2で見たように、解析画像"Colony.tif"には、輝度のムラがあります。画像をこの まま 2値化 (4-11ページ参照) して自動カウントすると、画像の背景からコロニーを正 しく抽出できず、カウントに失敗する可能性がありますので、2値化を行なう前に、画像 を予め以下の手順で平坦化しておきます。

>>> 次のステップ「4.5 測定範囲を限定する」(4-10ページ) へ進んで下さい。

4.5 測定範囲を限定する

次に、解析画像内の測定範囲(ここではシャーレの範囲)を限定します。手順は以下のようになります。

▼ 操作 - 測定範囲を限定する:

- Colony Counting ダイアログボックスの Select Area (範囲を指定) ボタンをクリックし、カーソルを解析画像内に入れます。
- カーソルが [%] のような形になったら、画像内をドラッグして、シャーレの範囲を 円で囲みます。

>>> 次のステップ「4.6 画像を2値化してコロニーを抽出する」(次ページ) へ 進んで下さい。

4.6 画像を2値化してコロニーを抽出する

次に、画像を2値化して、コロニーの部分(画像内の暗い点の部分)が背景から抜き出 されるようにします。手順は以下の通りです。

- ウィンドウの中央に表示されるヒストグラムの両側にある、赤い垂直線マーカをド ラッグして、画像内のコロニーの部分が赤く表示されるように2値化します(上 図)。この画像では、下限(左側のマーカ)を「0」、上限(右側のマーカ)を「197」前 後に設定すると、コロニーが赤く表示されます。
- 完了したら、Close (閉じる) ボタンをクリックして Colony Counting ダイアログボックスへ戻ります。
- >>> 次のステップ「4.7 自動カウントを実行し、測定結果を表示する」(4-12 ページ) へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】その他のオプション設定:

■ 画像を自動で2値化し、コロニーを抽出する:

画像内のコロニーの領域と背景の領域の明るさの関係に基づいて、自動で画像 を2値化してコロニーを抽出できます。これを行なうには、上の4.6の手順の代わ りに以下のオプションのいずれかを選択し、次の4.7の手順に進みます。

- Automatic Dark Colonies (暗い色のコロニーを自動抽出)
- Automatic Bright Colonies (明るい色のコロニーを自動抽出)

Gel-Pro Analyzer スタートアップマニュアル ー【コロニーカウンティング】

4.7 自動カウントを実行し、測定結果を表示する

上記の設定の後、自動カウントを実行します。

操作 – 自動カウントを実行し、測定結果を表示する: Colony Counting ダイアログの Count (カウント実行) ボタンをクリックします。 1. 3 Colony Counting _ 🗆 🗙 Edit View Measure Image Intensity Range Selection -Options. Current Range (0....128) Select Area C Manual Filters Automatic Dark Colonies Count -クリックして自動カウントを Automatic Bright Colonies Auto Find 実行します これでコロニーの自動カウントが実行されます。 解析画像内のコロニーには赤いアウトライン (輪郭線) が付き、通し番号が振ら れます。 _ 🗆 🗙 Colony.tif (1/1) _ 🗆 🗙 <u>E</u>dit <u>V</u>iew <u>M</u>easure <u>I</u>mage カウント実行後の Intensity Range Selection Options. Current Range (0....197) Select Area 106 Manual Ranges... Filters Automatic Dark Colonies Count Automatic Bright Colonies Auto Find Save. Measure Colonies 37 コ 43 44 Apply Ranges Total Count: 53 4950 カウント 🗖 Add Count In Range: 53 - T 結果 Delete Close カウント結果は、Colony Counting ダイアログボックスの右下に表示されます。

注記: コロニーの測定を行なった場合は、Count ボタンをクリックすると同時に測 定も実行されます。

>>> 次のステップ「4.8 データベースに測定結果を保存する」(4-15ページ) へ進んで下さい。 以下は、ご参考用の詳細情報です。

【参考】自動カウント – その他のオプション:

■ コロニーを測定した場合の測定値の表示:

4-6ページの「コロニーの面積などを測定する場合」のオプションを使用してコロ ニーの測定を行なった場合、測定結果を表示するには、Colony Counting ダイア ログボックスの View (表示) メニューにある以下のコマンドを使用します。

- Data Set (データセット):

各コロニーの測定値を表示します。

- Statistics (統計):

測定値から算出された統計データを表示します。表示される統計データは 以下の通りです。

- Min (最小值)
- Max (最大値)
- Range (レンジ: 最小値と最大値の差)
- Mean (平均)
- Std. Dev (標準偏差)
- Samples (サンプル数: 測定対象となったコロニーの個数)
- Distribution (分布グラフ):

測定結果の分布を示す度数分布ヒストグラムを表示します。

測定結果は、いずれも外部への出力が可能です。外部出力の方法については、 「2.5 測定結果を外部へ出力する」(2-57ページ)をご参照下さい。

■ 不要な領域がコロニーとしてカウントされる、あるいは必要なコロニー がカウントされない場合:

このような場合、カウントの結果を手動補正できます。手順は以下のようになります。

- 不要な領域をカウントから除外する:

不要な領域 (コロニーではないゴミや、シャーレの縁の一部など) がカウント されてしまった時は、まず Colony Counting ダイアログボックスの Edit (編 集) メニューにある Remove/Show Colonies (コロニーの除外/復帰) コマン ドをクリックします。 次に、解析画像内の不要な領域(誤ってコロニーとしてカウントされている もの)をクリックして除去します(一度クリックすると除去され、もう一度クリッ クすると再度表示されます)。

不要な領域を全て除去したら、Gel-Pro Analyzer ダイアログボックスの Continue (続ける) ボタンをクリックします。これでカウント結果が更新されま す。

注記:不要な領域をカウントからー括除去するには、選別レンジを利用でき ます。選別レンジについては、「測定結果に基づいてコロニーの選別を行な う場合」(4-8ページ)をご覧下さい。

- カウントされなかったコロニーをカウントに追加する:

これを行なうには、Colony Counting ダイアログボックスの Edit (編集)メニ ユーにある Draw/Merge Colonies (コロニーを描く/結合する) コマンドを実 行し、解析画像内をマウスでドラッグしてコロニーの輪郭を描き、 Draw/Merge Colonies ダイアログボックスの OK ボタンをクリックします。描 いたコロニーが解析画像内に表示され、同時にカウントが更新されます。

■ 2つのコロニーが1個としてカウントされている場合:

この場合、Colony Counting ダイアログボ ックスの Edit (編集) メニューにある Split Colonies (コロニーを分割する) コマンドを 実行し、マウスで2つのコロニーを分離す る線を引いてから、Split Colonies ダイアロ グボックスの OK ボタンをクリックします。

分離する線を引きます

コロニーが分割され、同時にカウントが更新されます。

■ コロニーカウントを完全自動で行なう:

カウントを完全に自動処理で行なうこともできます。これを実行するには、解析画 像を開いてから、Tools (ツール) メニューの Colony Counting (コロニーカウンティ ング) コマンドを実行して Colony Counting ダイアログボックスを開き、Auto Find (自動検出) ボタンをクリックします。

ー連の自動処理が実行され、カウントの結果(カウント数と、コロニーの大きさを2 つの等級に自動分類した結果)が表示されます。

注記:完全自動でカウントする場合、画像内にシャーレが見つからないと、 "Could not find dish." (「シャーレが見つかりません」) と表示されます。この場合 は、Continue (続ける) ボタンをクリックし、画像内に表示される円をドラッグして 測定範囲を指定してから、Continue ボタンをクリックしてカウントを実行して下さ い。 Gel-Pro Analyzer スタートアップマニュアル ー【コロニーカウンティング】

4.8 データベースに測定結果を保存する

測定の終了後に、測定結果をデータベースに保存する手順は以下の通りです。

▼ 操作 – データベースに測定結果を保存する:

 測定が終了した状態で、Gel-Pro Analyzer の File (ファイル) メニューから Save As (名前を付けて保存) コマンドを実行します。

Save File (ファイルを保存) ダイアログボックスの「ファイルの種類」欄で TIFF (TIF) を選択し、「ファイル名」欄に"Colony02"と入力してから、「保存」ボタンをク リックします。

保存する場所①:	🔄 Images	•	E Ø		
CDNA.tif Colony.tif DNA.tif DOLBLot Test01 DotBlot.tif FluorWells.tif	Oneband.tif Prot1.tif Quant.tif Aquant.tif Apd.tif SeedProtein.tif Skewed.tif	ia Slanttif a Spots.tif a Steptab.tif a Steptab.tif			入力 します
ファイル名(N): ファイルの種類(T):	Colony02			保存(S)	ークリッ・ します
Compression: LZW & Differencing	Output BPP				

TIFFを選択します

2. 次に、Colony Counting ダイアログボックスの Save (保存) ボタンをクリックします。

Experiment (実験) ダイアログボックスが開きます。

ここで、必要に応じて Title (タイトル) 欄や Description (説明) 欄にコメントを入 力・編集できます。 Close Experiment 18 Oreate Date/Time: 2001-07-24 18:39:44 2001-07-24 18:39:44 Modified Save New Title Colony Counting Test 0 必要なデータを~ Tanaka Save 半角英数文字で Function Type: Colony counting • 入力・編集します Description: Training ▼ Show this dialog at start-up × 1 Image Status: <No Image Attached> F Archive all open images into database 注記:

- Experiment ダイアログボックスに入力した文字データ(実験データ)は、実験データをデータベースから呼び出す時の、検索文字列になります。
- 文字データは全て半角英数文字で入力して下さい。日本語の全角文字は、全角の数字やアルファベットを含めて入力しないで下さい。
- Save New (新規保存) ボタンをクリックします。これでデータベースが起動し、解 析画像と解析結果がデータベースに登録されます。

Save Experiment	×
Experiment 18	Close
Create Date/Time: 2001-07-24 18:39:44	
Modified 2001-07-24 18:39:44	Save New クリックします
Title: Colony Counting Test 01	Open

データベースのウィンドウに、登録された解析画像のサムネイル(ミニチュア画像) が表示されます。

 以上でコロニーカウンティングのセッションは終了しましたので、Gel-Pro Analyzer の File (ファイル)メニューにある Exit (終了) コマンドを実行して、Gel-Pro Analyzer を終了して下さい。 注記: データベースの使用法について詳しくは、「2.6 データベース」(2-63ページ) をご参照下さい。

>>> 以上で、「第4章 コロニーカウンティング」の操作練習は全て終了です。 次のステップとして、「第5章 濃度の測定」へ進みましょう。

第5章 濃度の測定

測定内容:

Gel-Pro Analyzerの濃度測定ツールを使用すると、解析画像内の測定対象領域をトレースして囲み、その領域の濃度を測定することができます。濃度測定で測定可能な主要データは、以下の通りです。

- 測定対象領域(バックグラウンドを除く)の積分光学濃度 [Total Density (OD)]
- 測定対象領域(バックグラウンドを除く)の平均光学濃度 [Mean Density (OD)]
- ー 測定対象領域の面積 (Area)

注記:上記以外の測定項目については、5-10ページをご覧下さい。

本章では、Gel-Pro Analyzer に付属のサンプル画像を使用して、以上の測定項目について、必要なオプション設定を行ないながら測定します。

解析画像の要件と操作の概要:

以下の練習では、例としてサンプル画像の"Spots.tif"を使用しますが、濃度測定ツールで測定する解析画像は、以下の要件を満たしている必要があります。

- グレイスケール画像 (Gray Scale 8/12/16および Floating Point) であること。

画像がカラー画像である場合は、測定を行なう前に、あらかじめ Edit (編集)メニ ューの Convert To (変換) コマンドまたは Color Channel (色成分) コマンドにて グレイスケール画像にしておく必要があります。

濃度の較正 (density calibration)を適用した画像であること。
 濃度の測定を行なうには、解析画像に濃度の較正をかける必要があります。

ここで行なう練習の概要は、以下の通りです。

- Gel-Pro Analyzer を起動し、Experiment ダイアログで基本設定を行なう(5-2 ページ)
- 画像を開く(5-4ページ)
- 濃度の較正を行なう(5-5ページ)
- 測定領域をトレースし、測定を実行する(5-6ページ)
- 測定結果をデータベースに保存する(5-11ページ)

この操作の大部分は、画面に表示される Area Density Tool (濃度測定ツール)ダイア ログボックス(下図)のボタンをクリックすることで実行できます。

Area Density Tool — ダイアログボックス

Area Density 1	Fool - Spots.tif	(1/1)			_ 🗆 ×
<u>File V</u> iew					
Define Region	Region	Total Density	Mean Density	Area	
Intensity Calib					
Rename					
Update					
Delete					
Del. All					
Options					
Save					
Close					

Area Density Tool ダイアログボックスは、Experiment ダイアログボックスの Function Type 欄で Area density を選択するか、あるいは Gel-Pro Analyzer の Tools (ツール) メニューで Area Density (濃度測定)を選択することで表示されます (5-3ページをご 参照下さい)。

この練習には、約10分かかります。

5.1 実験データの入力

まず最初の操作として、実験データを入力する必要があります。操作手順は以下のようになります。

▼ 操作 - 実験データの入力:

Gel-Pro Analyzer をまだ起動していない場合は、Windows の「スタート」メニューの「プログラム」にある「Gel-Pro Analyzer 4.5」の「Gel-Pro Analyzer」をクリックして、Gel-Pro Analyzer を起動します。Gel-Pro Analyzer のアプリケーションウィンドウがアクティブになったら、以下の操作を開始できます。

Gel-Pro Analyzer が起動すると、通常は Experiment ダイアログボックスが自動的に開きます。

Experimentダイアログ—— ボックス(ここに実験	Experiment Experiment	20	OK
データを入力します)	Create Date/Tim Modified	ne: 2001-07-25 15:20:47 2001-07-25 15:20:47	New
	Title:		Open
	Experimenter:		Save
	Function Type:	Area density	Delete
	Description:	x x	Options Show this dialog at start-up
	Image Status:	<no attached="" image=""></no>	
	F Archive all op	pen images into database.	

注記: Gel-Pro Analyzer の起動時に Experiment ダイアログボックスが開かない ときは、File メニューの Experiment コマンドを実行して開いて下さい。

Experiment ダイアログボックスで、測定の内容に合わせて基本設定を行ない、 同時に実験データを入力する必要があります。

Title欄に、実験のタイトルを半角英数文字で入力します。ここでは、例として "Area Density Test 01"と入力します(上図)。

注記: Gel-Pro Analyzerでは、原則として日本語の文字を使用できません。半角 英数文字のみをご使用下さい。

- Experimenter欄に、実験者の名前を入力します。上図では、例として"Tanaka"と 入力しています。
- 3. Function Type欄で、Area density (濃度測定)を選択します。

選択すると同時に、Area Density Tool (濃度測定ツール) ダイアログボックスが 画面に開きます。

- 4. Description欄に、"Training"と入力します。
- 5. OKボタンをクリックしてExperimentダイアログボックスを閉じます。

注記:実験データについて詳しくは、2-4ページの「【参考】実験データについて」 をご覧下さい。

>>> 次のステップ「5.2 画像を開く」(5-4ページ) へ進んで下さい。

5.2 画像を開く

次のステップとして、解析対象となる画像ファイルを Gel-Pro Analyzer 上に開きます。 画像は、予め保存した画像ファイルから開いたり、スキャナ、カメラなどの画像取り込 みデバイスから取り込んで開くことが可能です。

▼ 操作 - 画像を開く:

- File (ファイル) メニューの Open (開く) コマンドを実行してOpen File (ファイルを開く) ダイアログボックスを開きます。
- 2. Gel-Pro Analyzerのアプリケーションフォルダの中にある"Images"フォルダ(通常 は"C:¥Gelpro45¥Images")を開きます。
- 3. 「Spots.tif"ファイルを選択し、「開く」ボタンをクリックして、「Spots.tif"ファイルを開きます。

この画像はグレイスケール画像で、明るい背景の中に、黒い測定対象(粒子)が 写っています。

以下の操作では、この黒い粒子の濃度(積分光学濃度と平均濃度)を測定します。

>>> 次のステップ「5.3 濃度の較正を行なう」(次ページ) へ進んで下さい。

5.3 濃度の較正を行なう

次に、画像に対して濃度の較正を行なう必要があります。手順は以下のようになります。

注記:濃度の較正を行なっていない解析画像を測定すると、測定値が算出されません。従って以下の較正の操作は必須です。

これで Intensity Calibration ダイアログボックスが閉じ、解析画像"Spots.tif"に濃度の較正がかかりました。

>>> 次のステップ「5.4 測定領域をトレースし、測定を実行する」へ進んで下 さい。

5.4 測定領域をトレースし、測定を実行する

次に、解析画像内の測定対象領域(解析画像内の黒い粒子)をトレースして、測定を 実行します。

▼ 操作 ー 測定領域をトレースし、測定を実行する:

 Area Density Tool ダイアログボックスの Options (オプション) ボタンをクリックし て Measurement Options (測定オプション) ダイアログボックスを開き、Repeat region selection (領域の選択を反復する) オプションを選択します。

	Area Density [*] <u>F</u> ile <u>V</u> iew	1				
	Define Region	Region	Total Density	Mean Density	Area	1
	Intensity Calib					
	Rename					
	Update		0-1			
	Delete	Weat				
	Del All	Uuti	lines Color: -	√ed <u>▼</u>	ОК	
クリックします	- Options	LaD	eis Color: Ju	ireen 💌	J	
	Save		Repeat region sel	ection.		〒選択します
	Close		Keep region's sha	ре ———		╈書選択にします
			1			

- 同じダイアログボックスで、Keep region's shape (領域の形状を保持する)オプションを非選択にします。OK ボタンをクリックして Measurement Options ダイアログボックスを閉じます。
- 3. 次に、Define Region (領域を指定) ボタンをクリックします。

	ାର୍ମ Area Density T	°ool - Spots.tif (1/1	D		
クリック	<u>F</u> ile <u>V</u> iew				
します	Define Region	Region	Total Density	Mean Density	Area
	Intensity Calib				

Area Measurement メッセージボックスと、Magic Wand (マジックワンド) ダイアロ グボックスが開きます。

Magic Wand ———	Magic Wand - Click on [?] for help				
ダイアログボックス	Trace Range: 26 Smooth:				

注記: このとき、Magic Wand ダイアログボックスの代わりに Trace (トレース) ダイアロ グボックスが表示された場合は、Trace ダイアログの Wand ボタンをクリックし て、Magic Wand ダイアログボックスに切り替えて下さい。 Traceダイア --- Trace - Click on [?] for help ログボックス 🕐 Wand Thresh= 3 まSmooth= 0 まSpeed= 5 ま Noise= 5 ま Auto クリックして Magic Wand に切り替えます 画像の中にカーソルを入れると魔法の杖の形(ᅕ)になります。このカーソルの 4. 先の部分(---)で画像内の黒い粒子をクリックします。 クリックした粒子の輪郭がトレースされます。 粒子の内側を クリックします クリックすると粒子が レースされます agic Wand - Click on [?] for ? Trace Range: 55 Range 注記: このとき、粒子の全体でなく一部のみがトレースされてしまう場合は、Magic Wand ダイアログボックスの Range (レンジ) の値を増やしてから、再度粒子をクリ ックして下さい。 画像内を右クリックします。 5. これで粒子のトレース線が確定し、粒子に番号が付きます。 付定し、 定し、 像 内 を右クリック 粒子に番号が レース線が ? Trace Range: 上の4.~5.の手順を繰り返して、解析画像内の全粒子 6. をトレースします(右図)。 7. 全粒子をトレースし終わったら、Area Measurement メッセージボックスの End (終了)ボタンをクリックします。これでトレースと測定が終了し、測定結果が Area Density Tool ダイアログボックスの表に表示されます。

Gel-Pro Analyzer スタートアップマニュアル ー【濃度の測定】

- 表の Region (領域)の列に表示される番号は、解析画像内の各粒子に振られた番号に対応します。
- Total Density (OD) の列は、積分光学濃度(バックグラウンド部分を除く)を 表示します。
- Mean Density (OD) の列は、平均光学濃度(バックグラウンド部分を除く)を 表示します。
- Area の列は、面積を表示します。

注記:面積の測定値は、画像に空間較正がかかっているときは較正済みの値になります[「付録C 空間較正」(C-1ページ)をご参照下さい]。

以上で粒子の濃度の測定は終了です。

>>> 次のステップ「5.5 データベースに測定結果を保存する」(5-11ページ) へ進んで下さい。

以下は、ご参考用の詳細情報です。

【参考】濃度の測定 – その他のオプション:

■ マウスのドラッグで任意の形状をトレースして測定する:

Magic Wand (マジックワンド) ツールは、解析画像の背景と測定対象の領域との 間に十分なコントラストがある場合に有効ですが、コントラストが不十分な場合、 Magic Wand では正しくトレースできないことがあります。そのような場合は、 Magic Wand の代わりに Trace (トレース) ツールを使用して、測定対象領域をマ ウスでなぞることにより領域をトレースします。

これを行なうには、上記の3.~5.の手順を以下のように変更します。

3. Define Region (領域を指定) ボタンをクリックします。 Magic Wand ダイアロ グボックスが表示されたら、同ダイアログの Trace (トレース) ボタンをクリッ クして、Trace ダイアログボックスを開きます。

Gel-Pro Analyzer スタートアップマニュアル ー【濃度の測定】

Traceダイアー「Trace - Click on 12 for help ログボックス <u>11 Wand</u> Thresh= 3 全Smooth= 0 全Speed= 5 会 Noise= 5 会 「 Auto

 画像内にカーソルを入れ、測定対象 物の輪郭をなぞるようにマウスをド ラッグしてトレースします。

> なぞるのに失敗したら、[Backspace] キーを押し続けてトレース線を戻し、 引き直して下さい。

注記: Trace ツールによるトレースの方法について詳しくは、「付録A その他のツール」(A-11ページ)をご覧下さい。

5. トレースが終了したら、画像内で右クリックします。

これで粒子のトレース線が確定し、粒子に番号が付きます。

不要な測定対象の領域を削除する:

上記の手順で測定対象の領域をトレースしたあとで、不要な領域を削除したいときは、以下の手順で行ないます。

- まず不要な領域を画像内でクリックします。クリックした領域に対応する測 定値が Area Density Tool ダイアログボックスの表内でも選択されたことを 確認します。
- 2. Area Density Tool ダイアログボックスの Delete (削除) ボタンをクリックしま す。
- 3. ^{"Delete Measurements"}(「測定値を削除しますか?」)というメッセージが表示されたら、「はい」を選択して削除を実行します。

同一の形状・同一の大きさの測定対象領域が画像内に複数個存在している場合:

この場合は、Area Density Tool ダイアログボックスの Options (オプション) ボタンをクリックして、Keep region's shape (領域の形状を保持する)を選択してから Define Region ボタンをクリックし、最初の測定対象領域をトレースします。

トレースが終わったら画像内を右クリックしてトレース線を確定し、次にトレース線 をドラッグして移動し、別の測定対象領域の上に重ねてから、右クリックします。 これで最初の領域のトレース線が2番目の領域にコピーされました。この要領 で、トレース線の移動と右クリックを繰り返して、画像内の全ての測定領域にト レース線を重ね、最後に Area Measurement メッセージボックスの End (終了) ボ タンをクリックします。

■ その他の測定項目:

濃度の測定では、積分光学濃度(Total Density)、平均光学濃度(Mean Density)、面積(Area)以外にも測定データを算出できます。その他の測定項目を 表示するには、Area Densityダイアログボックスの View (表示)メニューから以下 の項目を選択します。

- Total Background (バックグラウンド部分の積分光学濃度)
- Mean Background (バックグラウンド部分の平均光学濃度)
- Total Raw Density (バックグラウンドを含む測定対象領域の合計積分光学 濃度)
- Mean Raw Density (バックグラウンドを含む測定対象領域の平均濃度)
- Minimum Intensity [最小輝度(濃度)]
- Maximum Intensity [最大輝度(濃度)]
- Calibrated Value [(画像に質量の較正(2-36、3-15ページ参照)が適用され ている場合のみ) 較正済みの質量(マス)]

注記:上記で、「バックグラウンド」とは、測定対象領域の周囲5ピクセル幅の円環の領域です。例えば、Mean Densityは、Mean Raw Density から Mean Background を減算した値です。

■ 統計データを表示する:

測定値の統計データを表示するには、Area Densityダイアログボックスの View (表示)メニューから Statistics (統計)を選択します。算出される統計データは以 下の通りです。

- Min.(最小) Max.(最大)
- Range (レンジ): 最大値と最小値の差です
- ー Mean (平均) ー Std. Dev. (標準偏差)
- Sum(合計)
- Samples (サンプル数): 測定対象となった領域の個数です

注記:測定データを再び表示するには、View メニューで Density List(濃度データー覧)を選択します。

■ 複数の較正データセットを使用する:

Area Density ウィンドウの File メニューで Calibration (較正) – Allow Multiple Calibrations (複数の較正データを使用する)オプションを選択してから Mass Calibration コマンドを実行すると、複数の較正データセットを使用できます。複数の較正データの使用について詳しくは、2-39ページの「複数の較正データセットを使用する」をご覧下さい。

Gel-Pro Analyzer スタートアップマニュアル ー【濃度の測定】

5.5 データベースに測定結果を保存する

測定の終了後に、測定結果をデータベースに保存する手順は以下の通りです。

▼ 操作 - データベースに測定結果を保存する:

 測定が終了した状態で、Area Density Tool (濃度測定ツール) ダイアログボック スの Save (保存) ボタンをクリックします。

					- ,	
クリック — します	Del. All	6	240.747	.650668	0	
		7	83.0578	.550052	0	
	Options	8	131.434	.584153	0	
	Save	9	310.220	.583120	0	
		10	88.3708	.532354	0	
	Close	11	946.682	.662478	0	
		12	349.855	.596005	0	τl
						-

 Experiment (実験) ダイアログボックスが開きます。ここで、必要に応じて Title (タ イトル) 欄や Description (説明) 欄にコメントを入力・編集できます。

	Save Experiment		×
	Experiment	21	Close
	Create Date/Tir	ne: 2001-07-25 18:22:27	
	Modified	2001-07-25 18:22:28	Save New
	Title:	Area Density Test 01	Open
必要なデータを	Experimenter:	Tanaka	Save
半角英数文字で	Eunction Type:	Area density	Delete
入力・編集します	Description:	Training	Options
			Show this
		V	start-up
	Image Status:	<no attached="" image=""></no>	
	F Archive all o	pen images into database.	

注記:

- Experiment ダイアログボックスに入力した文字データ(実験データ)は、実 験データをデータベースから呼び出す時の、検索文字列になります。
- 文字データは全て半角英数文字で入力して下さい。日本語の全角文字は、全角の数字やアルファベットを含めて入力しないで下さい。
- Save New (新規保存) ボタンをクリックします。これでデータベースが起動し、解 析画像と解析結果がデータベースに登録されます。

	Save Experiment	×	
l	Experiment 21	Close	
1	Create Date/Time: 2001-07-25 18:22:27		
1	Modified 2001-07-25 18:22:28	Save New	クリックします
l	Title: Area Density Test 01	Open	

データベースのウィンドウに、登録された解析画像のサムネイル(ミニチュア画像) が表示されます。

注記: ここで"Workspace '...' has not been saved. You need to save it to a file." (「ファイル'...'は未保存です。ファイルに保存する必要があります」)と表示された ら、OK ボタンをクリックして、画像をファイルに保存して下さい。

 以上で濃度解析のセッションは終了しましたので、Gel-Pro Analyzer の File (ファ イル)メニューにある Exit (終了) コマンドを実行して、Gel-Pro Analyzer を終了し ます。

注記: データベースの使用法について詳しくは、「2.6 データベース」(2-63ページ) をご参照下さい。

>>> 以上で、Gel-Pro Analyzer の操作練習は全て終了です。 製品について の詳しい情報は、Help (ヘルプ)メニューのコマンドで表示される英文 オンラインヘルプおよび英文マニュアルをご覧下さい。

付録A その他のツール

ここでは、Gel-Pro Analyzerのその他の主要なツールについてご説明します。第1章と 重複する説明もありますが、整理のために合わせて記述します。

ツールバー

画面上部にあるツールバーには、Gel-Pro Analyzerの各コマンドをアイコンの形で表 すコマンドツールボタン(下図)が並んでいます。これらのボタンをクリックすると、メニ ューを開かずに、直接 Gel-Pro Analyzerのコマンドを実行することができます。

2 □ Ⅲ ▷ ◇ 4 □ □ № □ ○ < / < ● ┃ Ⅲ Ⅲ Ⅲ ◎ ◎ 図 8 8 8 8 8</p>

ツールバーは、[F5]キー[または Window(ウィンドウ)メニューの Hide/Show Tools (ツールバーの表示/非表示)コマンド]で表示・非表示を切り替えられます。また、ツー ルバーを画面上部から切り離して、フローティングパレットとして画面上の任意の位置 に置くことができます。

ツールバーを切り離すには、ツールバーの右端または左端をマウスで下へ向かってド ラッグします。

切り離されたツールバーはフローティングパレットになり、画面上の任意の位置に置い て使用できます。

また、フローティングパレットの縁にカーソルを置き、二方向矢印が表示されたときにド ラッグすると、フローティングパレットを自由な形(横長、縦長など)に変形できます。
ツールバーを元の位置(メニューバーの真下)に戻すには、フローティングパレットをメ ニューバーの上へドラッグして下さい。

▼「AOI (対象領域: Area of Interest)」ツール:

「AOI」ツールは、画像処理・計測の対象を画像内の特定領域のみに限定するときに使用します。Gel-Pro Analyzerの多くのコマンドでは、実行範囲をAOIで限定することができます。解析処理や画像処理を実行すると、AOIで囲まれた範囲内のピクセルのみが処理対象となり、AOIの外側のピクセルは処理対象から除外されます。

定義するAOIの形状によって、いくつかのAOIツールがあります。

- 「New AOI」(新規AOI)ボタン:現在定義されているAOIを解除し、それと 同一タイプの新規AOIを定義できます。例えば画像内にはすでにアクティブ な自由曲線AOIが存在しているが、それを捨てて別の自由曲線AOIを定義 したい、という場合にこのボタンをクリックします。これによって古いAOIが 画面からクリアされ、自由曲線AOI作成用カーソルが表示されて、新規の AOIを定義できるようになります。
- □ 「矩形AOI」ボタン:このツールを使用すると、画像中で四角形、つまり矩形のAOIを新規に定義したり、アクティブにすることができます。このツールを使用したいときは、クリックして選択して下さい。選択中は、ツールのボタンがアクティブになります。
- ○「楕円AOI」ボタン:このツールを使用すると、画像中で円形ないし楕円形のAOIを新規に定義したり、アクティブにすることができます。このツールを使用したいときは、クリックして選択して下さい。選択中は、ツールのボタンがアクティブになります。
- 「自由曲線AOI」ボタン:このツールを使用すると、画像中で自由曲線 AOIを新規に定義したり、アクティブにすることができます。どのような多角 形でも自由曲線AOIとして定義できます。このツールを使用したいときは、 クリックして選択して下さい。選択中は、ツールのボタンがアクティブになり ます。

このボタンでは、Magic Wand (マジックワンド)ツールとTrace (トレース) ツールを切り替えて使うことができます。

Magic Wand(マジックワンド)とTrace(トレース)について詳しくは、A-8ページの「AOIに関する解説」をご覧下さい。

▼ その他のコマンドツールボタン:

ツールバーには、この他にもコマンドを簡単に呼び出すボタンアイコンが並んでいます。ボタンをクリックすることにより、メニューを開かずにコマンドを実行できます。

ツールの説明:ボタンの機能を知るには、ツールバー 上のボタンアイコンにカーソルを重ねます。すると、コ マンドについての短い説明がカーソルの下に示され ます(右図)。

但し、処理対象となる画像が存在しなかったり、あるいは現在アクティブな画像 が処理不可能な画像形式になっている、等の理由で使用できないコマンドにつ いては、説明文が表示されません。

- Open(開く)ボタン:画像ファイルを開きます。詳しくは、オンラインヘルプ (英文)の「キーワード」から Open(開く)コマンドの項を開いてご覧下さい。
- Save (上書き保存)ボタン:画像ファイルを保存します。詳しくは、オンラインヘルプの「キーワード」から Save (上書き保存)コマンドの項を開いてご覧下さい。
- Image Database(画像データベース)ボタン: Gel-Pro Analyzerの内蔵画像データベースを呼び出します。詳しくは、「2.6 データベース」(2-63 ページ)をご覧下さい。
- Video/Digital(ビデオ/デジタル)ボタン:画像をカメラから取り込みます。詳しくは、オンラインヘルプの「キーワード」から Video/Digital(ビデオ/ デジタル)コマンドの項を開いてご覧下さい。
- Scan (スキャン)ボタン:画像をスキャナから取り込みます。詳しくは、 「付録B 画像をスキャナで取り込む」(B-1ページ)をご覧下さい。
- Print(印刷)ボタン:画像をプリンタで印刷します。詳しくは、オンラインへ ルプの「キーワード」から Print(印刷)コマンドの項を開いてご覧下さい。
- 「アンドゥ」(Undo)ボタン: 直前に行った操作を取り消します。詳しくは、 オンラインヘルプの「キーワード」から「Undo」コマンドの項を開いてご覧下 さい。
- Annotate (注釈)ボタン: 画像に文字、矢印等の注釈を入れます。詳しくは、オンラインヘルプの「キーワード」から Annotate (注釈)の項を開いてご覧下さい。

- └ Optimize image (最適合わせ込み)ボタン:画像のコントラストを自動 的に最適化します。詳しくは、オンラインヘルプの「キーワード」から Best Contrast(最適合わせ込み)の項を開いてご覧下さい。
- ₩ Reset enhancement(コントラストをリセットする)ボタン:コントラスト 設定をリセットして、画像を元の状態に戻します。詳しくは、オンラインヘル プの「キーワード」から Reset Contrast (コントラストをリセットする)コマンド の項を開いてご覧下さい。
- Colorize Image (擬似カラー)ボタン:グレースケールの画像に擬似カ ラーを着色します。詳しくは、オンラインヘルプの「キーワード」から Pseudo-Color (擬似カラー)コマンドの項を開いてご覧下さい。
- View 1D-Gel Tool Bar (1D-Gelツールパレットを表示)ボタン:1D-Gelツールパレットを表示します。詳しくは、「第2章 1次元ゲルの解析」をご 覧下さい。
- View Dot Blots Tool Bar(Dot Blotsツールパレットを表示)ボタン: Dot Blotsツールパレットを表示します。詳しくは、「第3章 ドットブロットの 解析」をご覧下さい。
- ⑧ View Colony Counting Tool (コロニーカウンティングツールを表 示)ボタン:Colony Counting ダイアログボックスを表示します。詳しくは、 「第4章 コロニーカウンティング」をご覧下さい。

² View Area Density Tool (濃度測定ツールを表示)ボタン: Area Density Tool ダイアログボックスを表示します。詳しくは、「第5章 濃度の 測定」をご覧下さい。

- 📴 Macro Management (マクロ)ボタン:マクロコマンドを実行します。詳し くは、オンラインヘルプの「キーワード」から Macro コマンドの項を開いてご 覧下さい。
- Record Macro (マクロの自動記録)ボタン:マクロの記録を開始しま す。詳しくは、オンラインヘルプの「キーワード」から Record Macro Command(マクロの自動記録)コマンドの項を開いてご覧下さい。

Macro Editor(マクロ編集)ボタン:既存のマクロの編集を行います。詳 しくは、オンラインヘルプの「キーワード」から Edit Macro Command (マク ロ編集)コマンドの項を開いてご覧下さい。

メニューバー

アプリケーションウィンドウの上部にあるメニューバーには、Gel-Pro Analyzerのメニ ューが表示されます。

<u>File Edit Acquire 1</u>D-Gels <u>D</u>ot-Blots <u>T</u>ools Ma<u>c</u>ro <u>W</u>indow <u>H</u>elp

メニューをクリックするとその下にコマンドの一覧が表示され、コマンドをクリックすることで画像処理・解析等を実行できます。

- File(ファイル):主に画像ファイルの入出力に関係するコマンドがあります。画像の較正コマンドもこのメニューにあります。
- Edit(編集):画像の編集(コピー、貼り付け、画像サイズ変更、回転等)や画像 データ形式の変換を行なうコマンドがあります。
- Acquire(取り込み):カメラやスキャナから画像を取り込むコマンドがあります。
- 1D-Gels(1次元ゲル解析):1次元ゲル解析用のツールパレットを表示するコマンド、レーンプロファイルを表示するコマンド、実験データを表示するコマンド、バンドやレーンのラベルを変更するコマンドなどがあります。
- Dot-Blots (ドットブロット解析): ドットブロット解析用のツールパレットを表示 するコマンドがあります。
- Tools (ツール): コロニーカウンティングを自動実行するコマンド、濃度測定用 ダイアログボックスを開くコマンド、バックグラウンド補正コマンド、サーフェイスプ ロット(輝度の3次元表示)コマンドがあります。
- Macro(マクロ): Gel-Pro Analyzer内蔵の言語IPBasicを使用して、操作を自動 化するためのコマンドがあります。他にデモ用に用意されたマクロのロード、実行 を行うコマンドがあります。
- Window(ウィンドウ):画面に開いている画像ウィンドウを並べ直したり、アクティブなウィンドウを切り替えるコマンドがあります。
- Help(ヘルプ): Gel-Pro Analyzer のオンラインヘルプ(英文)を起動するコマン ドがあります。

メニュー内の各コマンドについての詳しい説明は、Help(ヘルプ)メニューの Gel-Pro コマンドを実行し、オンラインヘルプ(英文)をご覧下さい。 Gel-Pro Analyzerスタートアップマニュアル ー【付録A その他のツール】

ステータスバー

画面下部にあるステータスバーには、画面に表示中の画像、カーソルの位置とピクセルの値、処理の進行状況等の各種情報が表示されます。

 ①
 ②
 ③
 ④
 ⑤
 ⑦
 8
 ⑨

 □
 Gray Scale 8/276.224 bytes), Zoom100%
 437, 118
 126
 160.4261.78
 W/H 102.75
 Gray Level
 Pixels Spatial Cal 3)
 1GB

- ① 単一フレームボタン/複数フレームボタン:次ページをご覧下さい。
- ② メッセージバー:メッセージバーは、画面上の画像についての情報や、画像処理・解析処理の進行状況、コマンドの説明を表示します。
 - カーソルを画像のタイトルバーに重ねると、画像についての情報[画像の データ形式、ピクセルの値(輝度値、RGB値)、バイト数、表示サイズ]が表示 されます。
 - 時間のかかる処理が進行中の時は、処理の名称と処理の進行状況を示す インジケータが表示されます。
 - メニュー内のコマンドをクリックすると、そのコマンドの説明が表示されます。
- ③ カーソルの位置:カーソルの画像内での位置を表示します。原点は、通常は画像の左上の角です。画像に空間較正をかけている場合は、カーソルの位置を実すで表示します[詳しくは、「付録C 空間較正」と、オンラインヘルプの「キーワード」から Preferences(初期設定)コマンドの項を開いてご参照下さい]。
- ④ ピクセルの値:カーソル位置のピクセルの値を表示します。モノクロ画像では輝度値、フルカラー画像ではRGB値、パレット形式の画像ではインデックス番号を表示します[詳しくは、「付録C 空間較正」と、オンラインヘルプの「キーワード」から Preferences(初期設定)コマンドの項を開いてご参照下さい]。
- ⑤ AOIの座標:画像内に矩形AOIまたは楕円AOIがあるとき、そのAOI(またはAOIの外接四角形)の頂点の座標を表示します。
- ⑥ 画像のサイズ:画像の縦横の解像度またはAOIのサイズ["W"(横)、"H"(縦)]を 表示します。
- ⑦ 輝度測定の単位:輝度較正を行なった場合、輝度較正の単位名を表示します [詳しくは、オンラインヘルプの「キーワード」から Preferences(初期設定)コマンド の項を開いてご参照下さい]。
- ⑧ 空間測定の単位:空間較正を行なった場合、測定値の単位と較正データ名を 表示します[詳しくは、「付録C 空間較正」と、オンラインヘルプの「キーワード」から Preferences(初期設定)コマンドの項を開いてご参照下さい]。
- ⑨ 空きメモリ:Gel-Pro Analyzerが使用できるメモリ(RAM)の量を示します。

単一フレームボタンと複数フレームボタン

Gel-Pro Analyzerの画面下部、ステータスバーの左端にある単一フレームボタン (□)と複数フレームボタン(□)は、複数フレームを含む画像ファイル(シーケンスファ イル、*.seq)に対して処理を行なう際に、単数のフレームに処理を適用するか、それと も複数のフレームに適用するかを指定するボタンです。

単一フレームボタン(□):このボタンを選択してからシーケンスファイルに対して処理を行なうと、シーケンスファイルの中の1枚の画像(現在画面に表示中のフレーム)のみに対して処理を実行します。その他のフレームは処理されません。

注記:Gel-Pro Analyzer の画面上でアクティブになっている画像がシーケンスファ イルでなく単一画像の場合は、常に単一フレームボタンが選択された状態になっ ています。

複数フレームボタン(型):このボタンを選択してからシーケンスファイルに対して画像処理を実行すると、シーケンスファイルに含まれる全フレーム(またはシーケンス内で選択中の全フレーム)に対して一括処理を行ないます。

注記:単一フレームボタン、複数フレームボタンについての詳細は、オンラインヘルプの「キーワード」から Sequence Tools (シーケンスツール)コマンドの項を開いてご覧下さい。

ファンクションキー

Gel-Pro Analyzer で使用できるファンクションキーは以下の通りです。

- [F2]キー:次の画像をアクティブにします[Window(ウィンドウ)メニューの Next Image(次の画像)コマンドと同じです]。
- [F3] キー:前の画像をアクティブにします[Window(ウィンドウ)メニューの Prev. Image (前の画像)コマンドと同じです]。
- [F4]キー:画面上のメニューバーとツールバーの表示/非表示を切り替えます。 プレゼンテーションなどで、画面に画像のみを表示したいときは、このキーでメニューバーとツールバーを隠すと便利です。

注記:測定・解析用のツールパレットやダイアログボックスは、[F4]キーを押して も常に画面上に残ります。また、ツールバーをフローティングパレット(A-1ページ を参照)にしている場合、[F4]キーを押してもパレットは画面上に残ります。

- [F5]キー:ツールバーの表示/非表示を切り替えます[Window(ウィンドウ)メニ ューの Hide/Show Tool Bar (ツールバーの表示/非表示)コマンドと同じです]。 注記:ツールバーを非表示にしている間は、AOIツールとパンツールを使用できま せんのでご注意下さい。
- [F6]キー:このキーを押すと、現在の画面表示をそのままプリンタで印刷します [File (ファイル)メニューの Print Screen (画面印刷)コマンドと同じです]。
- [F7]キー:このキーを押すと、現在の画面表示を画像として取り込み、ファイル に保存します。[F7]以外のキーを取り込み用キーに指定することもできます。詳し くは、オンラインヘルプの「キーワード」から Screen Capture (画面取り込み設 定)コマンドの項を開いてご覧下さい。

AOIIに関する解説

AOI (Area of Interest: 対象領域、ROIとも呼びます)は、画像内に作成される限定領 域です。多くのコマンドは、画像内にAOIが作成されている場合、AOIの範囲のみに対 して限定的に作用します。AOIは任意の形状のものを作成できますが、常に閉じた図 形となります。新規のAOIを作成する手順は以下の通りです。

1. AOIで囲む領域の形に合わせてAOIツールを選択します。矩形AOI(□)、楕円 AOI(□)、自由曲線 AOI(□)の各ツール中から、適切なものをクリックして選択 します(次ページ以降のAOIツールボタンの説明をご参照下さい)。AOIツールを 選択すると、選択中(アクティブ)であることを示すために、ツールのボタンが奥へ 引っ込んだような表示になります。

画像内でマウスをドラッグして、AOIを描きます。 2.

画像内にAOIができたら、それに対応するAOIツールボタンをクリックするたびに、AOI のアクティブ・非アクティブの状態を切り替えることができます。現在アクティブになって いるAOIは画像内に表示され、対応するAOIツールボタンがアクティブになります。

現在アクティブになっているAOIは、それに対応するAOIツールボタンをクリックすると 非アクティブになります。AOIを非アクティブにすると、そのAOIは画像から消え、対応 するAOIツールボタンは通常の表示に戻ります。

例として、まず矩形AOIを定義します。次に楕円AOIを定義し、ボタンをクリックして非ア クティブにします。最後に自由曲線AOIを定義します。ここで矩形AOIボタンをクリック すると、前回定義した矩形AOIが再度アクティブになります。同様に、楕円AOIまたは 自由曲線AOIを選択すると、直前に定義された楕円AOIまたは自由曲線AOIがそれぞ れアクティブになります。

このツールは、画像内に定義済みの矩形AOIが存在している場合といない場合とで、 動作の仕方が変わります。

- ・ <u>画像中に定義済みの矩形AOIが存在している場合、</u>矩形AOIボタンを選択する
 と、そのAOIがアクティブになります(そのAOIが画像中に現れます)。新規の矩
 形AOIを定義したいときは、矩形AOIボタンを選択した後、「NEW AOI」(新規AOI)
 ボタン(闘)をクリックして下さい。これで現在のAOIが削除され、矩形AOI作成用
 カーソル(□)が表示されて新規のAOIを定義できるようになります。
- ・ <u>画像中に定義済みの矩形AOIが存在していない場合は、</u>矩形AOI作成用カーソル())が表示されます。このカーソルを、AOIとして定義したい領域の左上に置き、マウスボタンを領域の右下までドラッグしてから、マウスボタンを離します。

注記: [Shift]キーを押しながらドラッグすると、正方形の矩形AOIができます。

定義した矩形が、AOIとなって画像中に現れます。矩形AOIが画像内でアクティブになっているときは、その大きさと位置を変更できます。

AOIの大きさを変えるには、カーソルをAOIの端ないしコーナーに置き、二方向カーソ ルが表示されたらドラッグして下さい。AOI全体を移動するには、カーソルを矩形AOI の中央に置き、四方向カーソルが表示されたらドラッグして下さい(下図)。

AOIの大きさを変えるとき

移動するとき

▼ 楕円AOIツール: ○

このツールは、画像内に定義済みの楕円AOIが存在している場合といない場合とで、 動作の仕方が変わります。

- ・ <u>画像中に定義済みの楕円AOIが存在している場合、</u>楕円AOIボタンを選択する
 と、そのAOIがアクティブになります(AOIが画像内に現れます)。新規の楕円AOI
 を定義したいときは、楕円AOIボタンを選択した後、「NEW AOI」(新規AOI)ボタン
 (脳)をクリックして下さい。これで現在のAOIが削除され、楕円AOI作成用カーソ
 ル(%)が表示されて新規のAOIを定義できるようになります。
- ・ <u>画像中に定義済みの楕円AOIが存在していない場合は、</u>楕円AOI作成用カーソ ル(%)が表示されます。マウスボタンを押してカーソルをドラッグし、所望の円形 ないし楕円形ができた時点でマウスボタンを離して下さい。

注記: [Shift]キーを押しながらドラッグすると、真円のAOIができます。

今定義した楕円が、AOIとなって画像中に現れます。

楕円AOIが画像内でアクティブになっているときは、その形状・大きさと位置を変更で きます。AOIの形状と大きさを変更するには、AOIの上下左右の端にカーソルを置き、 二方向カーソルが表示されたらドラッグして下さい。AOI全体を移動するには、カーソ ルを楕円の中央に置き、四方向カーソルが表示されたらドラッグして下さい(下図)。

AOIの大きさを変えるとき

移動するとき

▼ 自由曲線 AOIツール: ら

このツールは、画像内に定義済みの自由曲線AOIが存在している場合といない場合で、動作の仕方が変わります。

自由曲線AOIを定義するには、Trace (トレース)ツールと Magic Wand (マジックワンド)ツール(ワンドツール)の2つを使用できます。両方のツールを切り替えるには、 Wand (ワンド)ボタンまたは Trace(トレース)ボタンをクリックします。

とッ きー にル	Trace - Click on [?] for help
クを リック タ切り	Trace (トレース)ツール(本ページ) Maric Wand - Click on [2] for help
します	? Trace Range: 26 🚖 Smooth: 0 🚖

Magic Wand (マジックワンド)ツール(A-15ページ)

- ・ <u>画像中に定義済みの自由曲線AOIが存在している場合、</u>自由曲線AOIボタンを 選択すると、既存のAOIがアクティブになります(そのAOIが画像内に現れます)。 新規の自由曲線AOIを定義したいときは、自由曲線AOIボタンを選択した後、 「NEW AOI」(新規AOI)ボタン(
 ¹¹)をクリックして下さい。これで既存のAOIが削除 され、新規のAOIを定義できるようになります。
- <u>画像中に定義済みの自由曲線AOIが存在していない場合は、</u>そのまま自由曲線 AOIを定義できます。自由曲線AOIの定義には、以下の方法を利用できます。

Trace (トレース)ツールで自由曲線AOIを定義する方法:

トレースツールは、画像内のオブジェクトが不鮮明ないし複雑な形状で、トレースを手動で行なったり、手動で補正する必要があるときに使用します。カラー画像内のオブジェクトをトレースするときも、通常はトレースツールを使用します。

Trace - Clic	ck on [?] fo	or help							
? Wand	Thresh=	3 🗲 Smoot	h= 0	Speed= 5	₽ N¢	oise=	5 🚔	🗌 🗖 Auti	0

注記: 画面に Magic Wand (マジックワンド)ダイアログボックスが表示された場合は、 Trace (トレース)ボタンをクリックすると、Trace のダイアログ(上図)に切り替わりま す。

• <u>多角形の各頂点を手動でクリックしていく方法</u>この方法を使うと、直線の線分から成る多角形(折れ線の図形)を定義できます。このような多角形を定義するには、多角形の(始点を含む)各頂点で左マウスボタンをクリックしていき、最後に右マウスボタンをクリックして図形を閉じ、AOIを確定して下さい。

下の例は、マウスを5回クリックして、5角形のAOIを定義した例です。

フリーハンドで描く方法:この方法では、滑らかな曲線を描くことができます。左マウスボタンを押し続けながらカーソルをドラッグして描きます。下図の曲線のAOIは、この方法で描いたものです。

注記:描くのに失敗したら、[Backspace] キーを押し続けて下さい。[Backspace] キーを押すことで、トレースの線を逆方向へ戻すことができます。

描き終わったら、右マウスボタンをクリックして下さい。描いた図形の始点と終点 が自動的に結ばれ、AOIが確定されます。

注記:フリーハンドによる方法で曲線をトレースしにくいときは、多角形の頂点をク リックする方法(上記)を使うと、上手にトレースできます。

 オブジェクトを自動トレースする方法: Trace (トレース)ツール用ダイアログボック スの Auto (自動)オプションを選択すると(オプションのチェックボックスをクリック して「√」印を付けます)、自動トレース機能を使用できます。Auto(自動)オプショ ンを使うと、画像内のオブジェクトを自動的にトレースしてAOIを定義できます。

Hace Check on E. J for help			
Wand Thresh= 3 Smooth= 0 Speed	= 5 🛖 Noise=	5	Auto

自動トレースを行なう場合は、 このオプションを選択して下さい

Auto (自動)オプションを選択したら、画像内でトレースしたいエッジ上にある、最 初の2点を指定する必要があります。最初の点はトレース線の始点を定めるもの で、2番目の点はトレースする方向を指定するものです。点を指定するには、左マ ウスボタンを画像内でクリックします。 次の例は、オブジェクトの自動トレースを開始する方法を示しています。

自動トレースの始点を「クリック1」で 指定し、次に「クリック2」でトレースの 進行方向を指定します

最初の2点をクリックして指定すると、 オブジェクトの輪郭の残りの部分が 自動的にトレースされます

トレース線が始点に戻った時点で、Gel-Pro Analyzerはトレースを終了します。図 形を確定するには、右マウスボタンをクリックして下さい。確定するとトレース線の 色が変わります。

Gel-Pro Analyzerがトレースするエッジを見失ったり、あるいは画像ウィンドウの 端にぶつかった場合は、トレースが停止します。このような場合は、右マウスボタ ンをクリックしてトレースを終了するか、Auto (自動)オプションを解除して手動で トレースを続けるか、あるいはトレース中のエッジ上にある次の点を指定し、自動 トレースを継続して下さい(トレースを継続したいエッジ上をクリックします)。

注記:

- 自動トレースが誤った方向へ暴走したときは、画像内を1回クリックするか、 あるいはスペースバーを押すと自動トレースを停止できます。[Backspace] キーを押し続けるとトレース線を逆方向へ戻すことができます。
- [Shift]キーを押しながらマウスを逆方向へ動かすと、トレース線を素早く戻す ことができます。
- 自動トレースの速度が速すぎるときは、自動トレース用ダイアログボックスの Speed (速度)欄の数値を減らして下さい(下記を参照)。
- Auto (自動)オプションを選択していないときでも、自動トレースを実行できます。Auto (自動)を選択していないときは、トレースの始点(上図の「クリック 1」)を1回クリックして指定した後、進行方向を指定する点(「クリック2」)をダブルクリックすると自動トレースを開始します。

Gel-Pro Analyzerは、エッジを検出できない時は、トレースを全く行ないません。

Trace (トレース)ツールのオプション:

Gel-Pro Analyzerのエッジ検出メカニズムを微調整するには、トレース用ダイアロ グボックスのオプションを使用します。Gel-Pro Analyzerがエッジをうまくたどれな い場合や、AOIの中に入れたくない要素まで一緒にトレースしてしまうときは、この ダイアログボックス内の設定値を調整して下さい。

Trace - I	Olick on [?] f	or help								
(?) War	d Thresh=	3 🌩	Smooth=	Speed=	5 🌲	Noise=	5	ب	Aut	0

- 「?」ボタン:このボタンはヘルプ画面を表示します。
- Wand (ワンド)ボタン: Magic Wand(マジックワンド)(次ページ)に切り替えます。
- Thresh (閾値):この値を設定すると、トレースしているオブジェクトと背景とのコントラスト・レベルを指定できます。閾値のスケールは、「1」から「10」までです。画像のコントラストが弱いときは低い数値に設定します。コントラストが強い時は高い数値に設定します。
- Smooth (平滑化):この値を設定すると、エッジをトレースする際の各ノード (頂点)間のピクセルの数(0から9まで)を指定できます。高い値に設定する と、アウトラインが滑らかになります(こうすると、細かい凹凸を無視するよう になります)。反面、この設定だとエッジを見失う頻度も高くなります。また、 「3」ないし「4」以上の値を指定すると、エッジをはみ出してしまうことがありま す。
- Speed (速度):この値を設定すると、トレースの進行速度を調整できます。 指定できる値は、「1」から「9」までです。低い値ほど、トレースの速度が遅く なります。トレースの進行状況を目で確認したい場合や、自動トレースが頻 繁に暴走する場合は、トレース速度を遅く設定しておくと便利です。
- Noise (ノイズ):この値は、エッジを自動トレースする際の、前方の探索深度 を指定します。指定できる探索値は「0」から「5」までです。画像にノイズが多く、エッジが途切れている箇所が多いときは、高い値を設定して下さい。

通常のエッジの場合は低い値にとどめて下さい。高い値にすると、トレース にかかる時間が長くなります。

Auto (自動)オプション:自動トレース機能を使用するときは、このオプションを選択して下さい。自動トレースについて詳しくは、前述の「オブジェクトを自動トレースする方法」をご覧下さい。

いずれの方法で自由曲線AOIを新規定義した場合でも、右マウスボタンを押すと図形 が閉じて確定され、定義した自由曲線AOIが画像上に現れます。 自由曲線AOIは、一旦右マウスボタンを押して確定してしまうと、形を変えることができ なくなります。確定後に形の変更が必要になった場合は、AOIを描き直して下さい。ま ず、「NEW AOI」(新規AOI)ボタンをクリックして、既存の自由曲線AOIを画像から削除 し、再度AOIを描きます。

自由曲線AOIは、他の位置へ移動できます。カーソルを自由曲 線AOIの内部に置くと、カーソルが四方向カーソルに変わりま す。この状態でドラッグすると、AOI全体を移動できます。 移り

Magic Wand (マジックワンド)ツールで自由曲線AOIを定義する方法:

Magic Wand(マジックワンド)ツールは、画像内の輝度値の差に基づいてオブジェクト を自動トレースします。

Magic Wand -	- Click on	[?] for he	elp		
? Trace	Range:	26	•	Smooth:	

注記: 画面に Trace (トレース)ダイアログボックスが表示された場合は、Wand(ワンド)ボタンをクリックすると、Magic Wand(マジックワンド)のダイアログ(上図)に切り替わります。

Magic Wand(マジックワンド)ツールは、トレース線の手動補正ができませんので、画 像内のオブジェクトと背景に明確な輝度差がある場合に使用して下さい。また、輝度 差のみに基づいてオブジェクトをトレースするので、主にモノクロ画像でご使用下さい (カラー画像では使用できない場合があります)。

• Magic Wand (マジックワンド)による自動トレースの方法:

カーソルを画像内に入れるとマジックワンド(魔法の杖)の形(へ)になりますの で、カーソルの先端部分(--)で画像内のオブジェクトをクリックします。クリックし たオブジェクトの周囲がトレースされます。

引き続き右マウスボタンを押すと図形が確定され、定義した自由曲線AOIが画像内に現れます。

自由曲線AOIは、形を変えることができません。確定後に形の変更が必要になった場合は、AOIを作成し直して下さい。まず「NEW AOI」ボタンをクリックして、既存の自由曲線AOIを画像から削除し、再度 Magic Wand でAOIを作成します。

自由曲線AOIは、別の位置へ移動できます。カーソルを 自由曲線AOIの内部に置くと、カーソルが四方向カーソ ルに変わります。この状態でドラッグすると、AOI全体を 移動できます。

移動するとき

注記:

- 画像内のオブジェクトをマジックワンドでクリックするときは、必ずワンドの先端の部分(---)でクリックして下さい。
- ・ 画像内の複数のオブジェクトをトレースしたいときは、[Ctrl]キーを押しながら
 オブジェクトをクリックして下さい。
- クリックしたオブジェクトの全体がトレースされず、一部分のみがトレースされてしまうときは、Magic Wand(マジックワンド)ダイアログボックスの Range (レンジ)欄の数値を増やしてみて下さい(下記を参照)。
- オブジェクトと背景の輝度差に明確な差がない場合、オブジェクト同士がつ ながっている場合、ないしカラー画像の場合は、Trace (トレース)ツールでト レースする方が便利です。Trace (トレース)ツールを使用するには、Magic Wand (マジックワンド)ダイアログボックスの Trace (トレース)ボタンをクリッ クして、Trace ツール用のダイアログボックスに切り替えて下さい。
- Magic Wand(マジックワンド)ツールのオプション:

Magic Wand -	Click on	[?] for help				
? Trace	Range:	26	•	Smooth:	0	•

- 「?」ボタン:このボタンはヘルプ画面を表示します。
- Trace (トレース)ボタン: Trace ツール(A-11ページ)に切り替えます。
- Range (レンジ):この欄の数値は、トレースされるオブジェクトに含まれる階 調の数(浮動小数点形式の画像ではパーセンテージ)を示します。マジック ワンドでクリックしたオブジェクトの全体がトレースされず、一部のみがトレー スされてしまうときは、この数値を増やして下さい。
- Smooth (平滑化):この欄に高い値を設定すると、AOIのアウトラインが滑ら かになります(細かい凹凸は無視されます)。

外接四角形について

外接四角形は、矩形でないAOI(楕円AOI、自由曲線AOI)を完全に取り囲む最小の長 方形です。一部のコマンド(Copy (コピー)、Paste (貼り付け)、Save As(名前を付け て保存)コマンドなど)では、画像内の矩形領域に対して処理を行ないます。矩形でな いAOIに対してそのようなコマンドを適用すると、そのAOIに外接する四角形を指定範 囲と見なして処理を適用します。次の図は、様々な図形の外接四角形(点線部分)を 示しています。

Gel-Pro Analyzerは、AOI自体にコマンドを適用できる場合はそうしますが、もしできない場合はAOIの外接四角形に対して適用します。

Gel-Pro Analyzerスタートアップマニュアル ー【付録B 画像をスキャナで取り込む】

付録B 画像をスキャナで取り込む

Gel-Pro Analyzer はTWAIN規格に準拠するスキャナに対応していますので、TWAINス キャナから直接画像を取り込むことができます。

取り込みの手順は以下のようになります。

注記: Gel-Pro Analyzer では、TWAINドライバで画像取り込みを行なうスキャナの他 に、TWAINドライバで動作する画像取り込みボードやデジタルカメラ等を、全てScan (スキャン)コマンドおよび Select Scanner (スキャナーの選択)コマンドでサポートしま す。そのようなTWAIN機器の場合も、下記の操作手順に準じます。

TWAINスキャナから画像を取り込む手順:

TWAIN対応のスキャナから画像取り込みを行なう場合の基本的な手順は、以下の通りです。

1. Acquire(取り込み) メニューの Select Scanner (スキャナの選択)コマンドを実行 し、スキャナのTWAINドライバを選択します。

Gel-Pro Analyzer は、C:¥Windows¥Systemの中のTWAINフォルダにインストール されているTWAINドライバを一覧表示します。その中から使用スキャナのドライ バを選択して下さい。

ソースの選択	×	
ソース: Kodak Digital Camera 40 NEOS ROMOIA COLOR	選択 キャンセル	→ 使用スキャナの ドライバを選び、 「選択」をクリック します

注記:通常、この1.の操作による設定は保存されますので、使用スキャナを変 更しない限り、次回使用時からこの設定手順は不要となります。

2. Acquire メニューの Scan (スキャン)コマンドを実行します。

これで TWAIN ドライバが起動しますので、取り込み設定を行なってから取り込 みを実行して下さい。取り込みの設定は、スキャナにより異なります。設定につ いてはスキャナのマニュアルをご覧下さい。

スキャナから取り込んだ画像は、Gel-Pro Analyzerの画面に表示されます。

注記: TWAINスキャナ(ないしその他のTWAINデバイス)から画像を取り込む場合は、Gel-Pro Analyzer のマクロから取り込み処理を制御できません。取り込みは手動で行なって下さい。

付録C 空間較正

Gel-Pro Analyzer の コロニーカウンティング機能(第4章を参照)を使用すると、コロ ニーのカウントだけでなく、各コロニーについて測徴(面積や周囲長などの、特徴量の 測定)を行なえます(4-6ページを参照)。また、濃度の測定(第5章を参照)でも、測定 対象領域の面積を測定できます。

これらの測定を行なう場合、測定結果は通常はピクセル(画素)単位で算出されます が、画像に予め空間較正(寸法の較正)を適用しておくと、測定値が実寸(μm,mmな ど)の値に換算されて算出されます。

空間較正を行なうには、画面上に較正したい画像を開いてから、Gel-Pro Analyzer の File (ファイル) メニューにある Calibration(較正)コマンドをクリックしてサブメニュー を開き、Spatial Calibration (空間較正)コマンドを実行します。

Spatial Calibration (空間較正)コマンドを実行すると、Spatial Calibrationダイアログボックスが表示されます。

このダイアログボックスのタイトル("Spatial Calibration")の右隣には、Spatial Calibration コマンドの実行時にアクティブになっていた画像の名前(上図の例では "Colony05.tif")が表示されており、この Spatial Calibration ダイアログボックスがその 画像にリンクしていることがわかります。

Spatial Calibration (空間較正)ダイアログボックスの機能は次の通りです。

- ・ 寸法の較正(単位当たりピクセル数):
 ・
 寸法の測定単位[デフォルトでは Pixels (ピクセル=画素)]を、「マイクロメータ」、
 「ミリメートル」等の実測値の単位に較正します。
 ・
- 縦横比の較正:

特殊なカメラなどで、取り込んだピクセルが正方形でないときに、ピクセルの縦横 比を指定して正方形に較正します。

- 原点の較正:
 画像の原点(デフォルトでは画像の左上角)を任意の位置に指定します。
- 角度の較正(角度オフセット):
 画像内のコロニーの傾きを測定する際の基準となる方向(デフォルトでは画像の Y軸が0°)を任意の角度に指定します。
- 較正スケールの貼り付け:

寸法の較正を行なった後、較正スケールを画像内に貼り付けます。

以下では、上記の機能のうち、寸法の較正の操作手順のみを説明します。他の機能 については、Gel-Pro Analyzer の Help (ヘルプ) メニューから Gel-Pro コマンドを実 行してオンラインヘルプ(英文)を起動し、「キーワード」タブで Spatial Calibration の項 目をクリックして説明をご覧下さい。

寸法の較正(単位当たりピクセル数)-操作手順:

寸法の較正は、空間較正の中で最も基本的なものです。画像内のピクセル数(画素数)と実寸との関係(例えば「20ピクセル=1μm」など)を指定しておくと、Gel-Pro Analyzer が算出する測定結果が実寸値に自動換算されます。操作手順は以下の通りです。

- 画像を開き、File メニューの Calibration にある Spatial Calibration(空間較正)コ マンドを実行して Spatial Calibration ダイアログボックスを開きます。通常の場 合、大部分のボタンはグレイ表示(使用不可)になっています。
- New (新規)ボタンをクリックして新規較正データを作成し、Name (名前)欄に較 正データの名前(較正値セット名)をタイプします。

注記:較正値の名前は、デフォルトで「Spatial Cal..."になりますが、例えばサンプルの名前や、顕微鏡の倍率を表す「x50"、「x100"のような名前にしておくと便利です。

	Spatial Calibration – Co	olony05.tif 💶 🗖 🗙
較正データの名前を入力します—	Name: EQ1	▼ OK
単位を入力します ――――	Unit: mm	New

3. Unit (単位)欄で単位を選択します(上図)。

この欄で、実寸の測定単位("mm"など)を選択します。

 Pixels/unit(単位当たりピクセル数)を選択してから、実寸とピクセル数との関係 が既知である場合(例えば 3.92 ピクセル = 1 mmであることがわかっている時) は、水平(X)と垂直(Y)の両方向の1単位となるピクセル数を直接指定します。

X欄とY欄に単位当りのピクセル数を直接タイプするか、または♥ボタンを使っ て入力します(下図)。

注記:画像取り込みデバイスによってはピクセルが正方形でない場合があります ので、ここではXとYの値を別々に指定できるようになっています。入力した X 値と Y 値が同一でない場合、Aspect Ratio (縦横比)欄の数値が自動的に更新され、 入力した X 値と Y 値の関係(X/Yの比率)を反映します。また、Aspect Ratio の 値を「1」以外に変更すると、その値に合わせて Y の値を自動的に変更します。

5. (別の方法)実寸とピクセル数との関係が不明で、かつ画像内に寸法の基準となるオブジェクト(顕微鏡のスケール、ミクロンバー、定規など)が写っている場合は、上の4.の手順を行なう代わりに、Image(画像で)ボタン(上図)をクリックし、 画像内の基準オブジェクトを使用して較正を行ないます。

Image (値を)ボタンをクリックすると Scaling (スケーリング)ダイアログボックスが 表示され、同時に定義線が画像内に現れます。

Scaling ダイアログボックス内の Reference represents how many units? (基準の 既知の長さ)欄に、基準オブジェクトの単位数(基準オブジェクトの長さが何単位 に相当するか)を入力して下さい(下図)。

次に、定義線を基準オブジェクトに重ねて、長さを合わせます。

マウスを使って、定義線の長さをオブジェクトの長さに合わせて下さい。カーソル を定義線に当てるとカーソルが変形し、定義線全体や、その両端の点を移動でき ます。

定義線全体を移動するには、カーソルを定義線の中ほどに当て、カーソルが四方 向矢印になったら定義線を所望の位置までドラッグします。

定義線の端の点を移動したい場合は、まずカーソルをその点に当て、カーソルが 十字カーソルになったら、点を所望の位置までドラッグします。

定義線の位置・長さを調節して、定義線の長さが基準オブジェクトの長さと等しくなるようにして下さい(下図では定規の 100 mm の長さに合わせています)。

Scaling ダイアログボックスに基準オブジェクトの長さ(ここでは「100」)が入力されていることを確認してから、OK ボタンをクリックして Spatial Calibration (空間 較正)ダイアログボックスへ戻って下さい。

Gel-Pro Analyzer は、定義線の下にあるピクセルの数を、Scaling ダイアログボッ クスで指定した単位数で除算し、較正値を計算します。算出した較正値は、 Pixels/Unit (単位当たりピクセル数)欄のX、Y欄に表示されます。

6. 較正が終了した後、Spatial Calibration (空間較正)ダイアログボックスの OK ボ タンをクリックして較正を画像に適用します。ダイアログボックスは閉じます。

Spatial Calib	ration – Colony05.tif	_ 🗌 X	│ 最
Name: EQ	•	ОК	τ.
Unit: mm	•	New	用

最後に OK をクリックし -て、較正値を画像に適 用します

OK ボタンをクリックすることにより較正が画像に適用され、同時に画面下のス テータスバーの右端に、測定単位名と較正データの名前が表示されます(下図)。

同時に、較正データはGel-Pro Analyzer に登録され、次に Spatial Calibration (空間較正)コマンドを実行したときに、Spatial Calibration ダイアログボックスの Name (名前)欄に表示されます。

この後、Gel-Pro Analyzer のコロニーカウンティング・ツール(第4章を参照)を使 用してコロニーの測徴を行なったり、濃度測定ツール(第5章を参照)で面積を測 定すると、測定結果に較正がかかり、測定結果データが実寸値として算出されま す。

(任意) Gel-Pro Analyzer の File (ファイル)メニューの Save (上書き保存)コマンド実行して、較正データを画像ファイル内に保存します。

特定のファイルフォーマットの画像(TIFFなど)では、上記の手順により較正デー タを画像ファイル内に保存することが可能です。JPEGやBMPなどのファイルフ ォーマットでは較正データを画像ファイルに保存できませんので、ご注意下さい。

(任意) Calibration コマンドのサブメニューから Save Calibrations (較正値を保存)を実行し、較正データに名前を付けてファイルに保存します。

上の6.までの手順で行なった較正の結果は、自動的に較正値ファイル Ipcal.cal (通常はC:¥Gelpro4のフォルダにあります)に保存されていますが、それ以外のフ ァイルに保存したいときは、8.の手順で保存します。Save Calibrations コマンド は、Spatial Calibration (空間較正)ダイアログボックスの Name (名前)欄に表示 される較正データを全て保存します。

Calibration (較正)コマンドのサブメニューにある Intensity Calibration(輝度較正) コマンドで輝度較正を行なっている場合は、空間較正のデータだけでなく、輝度較 正のデータもファイルに保存されます。 注記:

- 上記の操作で較正データを作成した後は、同じ較正データを別の画像に適用することができます。例えば、同一の顕微鏡レンズ倍率で100枚の画像を取り込んだ場合、最初の1枚のみを上記の手順で較正した後は、同じ較正データを残りの99枚に適用できます。較正データを他の画像に適用するには、まず画像を開き、Spatial Calibration(空間較正)コマンドを実行し、Name(名前)欄で適用する較正データを選択してから、OK ボタンをクリックします。
- Gel-Pro Analyzer では、1枚の画像を較正すると、その較正値がデフォルトとなり、次に画面に開いた画像にも同じ較正データが自動的に適用されます。このため、場合によっては予想外の較正データが画像に自動適用されることがありますので、ご注意下さい。但し、その画像にあらかじめ別の較正データがかかっていた場合(画像ファイル内に別の較正データが保存されていた場合)は、画像内に始めから保存されていた較正データが優先されます。

Gel-Pro Analyzerスタートアップマニュアル - 【付録D 21 CFR Part 11対応機能】

付録D 21 CFR Part 11対応機能

Gel-Pro Analyzer ver. 4.5では、FDA(米国食品医薬品局)の21 CFR Part 11 (連邦規 則第21条第11章)に定められた、電子署名・電子記録に関する規則に対応するため に、いくつかの機能が搭載されました。

以下、それらの機能について説明します。

Audit Trail (コマンドログ) オプション:

Edit(編集)メニューの Preference (初期設定)コマンドで表示される Preferences ダイ アログボックスの Application (動作オプション)タブに、Generate audit trail log (コマ ンドログを作成する)オプションが追加されました。

	Preferences 🗙	
	Application Document Tool Bar Status Bar	
選択すると Gel-Pro Analyzer の操作記録を	Undo buffers: 4 Undo buffers: 4 Support multi-frame Undo (one Undo per image). Progress update rate: 0 msec. Prompt before closing modified images. Repaint background images.	
取ります ―――	✓ Generate audit trail log. Location: C¥GELPR045¥Logs Browse	コマンドログファイル
	OK Cancel Apply	の保存場所を指定 します

このオプションを選択しておくと、Gel-Pro Analyzer を起動してから終了するまでの全 イベントが監査証跡として記録されます。

	2003-07-30.log - X=th	×
コマンド	テイル(E) 編集(E) 検索(G) ヘルプ(H)	
	003/07/30 15:54:46.130 Gel-Pro Analyzer version 4.5.0.61 session started by user morita.	-
ログの例	003/07/30 15:54:50.420 ret = IpGelShow(GPEXP, 1)	
	003/07/30 15:55:33.040 ret = IpAppMove(72, 0)	
	003/07/30 15:55:33.040 ret = IpAppSize(1025, 769)	
	003/07/30 15:55:33.040 ret = IpAppSize(1025, 769)	
	003/07/30 15:55:33.040 ret = IpAppMove(72, 0)	
	003/07/30 15:55:53.960 ret = IpGelSetTxt(EXP_NAME, "Protein analysis")	
	003/07/30 15:55:53.960 ret = IpGelShow(GPEXP, 0)	
	003/07/30 15:56:35.980 ret = IpDocMove(0, 0)	
	003/07/30 15:56:35.980 'New workspace document ID is 0	
	003/07/30 15:56:35.980 ret = IpAppSelectUoc(0)	
	003/07/30 15:56:38.400 ret = lpDocSize(383, 323)	
	UU3/U//30 15:56:38.400 ret = Ip#sLoad('C:#UELPR045¥Images¥PR011.11F', tif')	
	UU3/U//30 15:56:40.980 ret = IpACalSet(ACAL_ATTR_CALMODE, ACAL_SINGLECAL_MODE, U, IPNULL)	
	UU3/U//30 15:56:41.090 ret = lpleLanes()	
	003/07/30 15:56:41.360 ret = IpGelShow(GPGrAPH, 1)	
	UU3/U//3U [5:55:41.53U ret = Iple Show(UPLANE, [)	
	003/07/30 15:56:49.110 ret = IpGelShow(GPLANE, U)	
	003/07/30 15:58:54.780 ret = IpGelDeleteSlant(-1)	

コマンドログファイル(*.log)は、Gel-Pro Analyzer のアプリケーションフォルダ(通常は C:¥GELPRO45)の下に作成される"Logs"フォルダ内に、1日単位で、テキストファイル 形式にて記録されます(拡張子は".log"ですが、テキストデータですので、「メモ帳」等 のテキストエディタで開けます)。

コマンドログファイルの保存場所を指定したいときは、Browse (参照)ボタンをクリック して指定して下さい。 注記:現在記録中のログファイルは、Gel-Pro Analyzerの起動中は開けません。また、Gel-Pro Analyzer上でマクロを実行した場合は、マクロが開始されたことは記録されますが、マクロのステップ中にある各イベントは記録されません。

Image Info Overlay (画像情報を重ね表示) コマンド:

Edit (編集) メニューの Image Info Overlay (画像情報を重ね表示) コマンドを使用する と、画像の作成日時、輝度・コントラストの設定値、画像の署名などの情報を、画像上 に重ね表示します。

画像に画像情報を重ね表示するには、あらかじめ測定を行なった後、Edit (編集)メニ ューの Image Info Overlay コマンドを実行して Image Info Overlay ダイアログ(上図) を開きます。

注記:

- 解析ツールを使用して、画像上にあらかじめ何らかのアウトラインやラベルなど を表示した状態でないと、画像情報は表示されません。
- 重ね表示される文字の色やサイズを変更したいときは、Font Settings (フォント 設定)ボタンをクリックして設定して下さい。

Selected Settings (表示する情報) 欄で表示したい情報を選択した後、Show Overlay on Image (情報を画像に重ね表示する) オプションを選択すると、選択した情報が画像 に重ね表示されます(上図)。

表示される情報のうち、Image Signature (画像の署名)は、現在画面上でアクティブに なっている画像の現在の状態を示す固有の文字列を生成します。この文字列は、画 像に変更が加えられる度に変化しますので、文字列が変化したかどうかを調べること で、画像が改変されたかどうかを確認でき、「デジタル署名」として利用できます。 画像上に重ね表示された情報は、画像を保存しても一緒に保存されません。重ね合わせられた情報を画像データに直接書き込んで画像ファイルに保存したい場合は、 Image Info Overlay ダイアログの Apply to New Image (新規画像に書き込む)ボタンをクリックします。

- Overlay Position (書き込み位置): 画像情報を書き込む位置を指定します。
 Header (画像の上部)または Footer (画像の下部)を選択できます(下図は、
 Header を選択した例です)。
- Fill Color (地の色): 画像情報を書き込む領域の、地の色を指定します。Black (黒)、Gray (灰色)、White (白)のいずれかを指定できます(下図は、Black を指 定した例です)。
- Apply Data Overlay (測定ラベル、アウトライン等を書き込む): このオプションを 選択すると、解析ツールが表示するラベルや、アウトライン等を一緒に画像に書 き込みます。

注記:書き込まれる文字の色やサイズを変更したいときは、一旦 Cancel をクリックして Image Info Overlay ダイアログに戻り、Font Settings (フォント設定)ボタンをクリックして設定して下さい。

OK ボタンをクリックすると、新規画像が作成され、その中に上で指定した情報が書き 込まれます。

作成された画像(上図)はフルカラー形式の画像で、画像情報等を示す文字は画像 データと一体化しています。この画像は、このまま任意の画像形式で保存できます。

注記: Apply New Imageボタンで作成された画像(上図)は、フルカラー形式なので Gel-Pro Analyzer で再測定することはできません(測定には元のモノクロ画像が必要 です)。あくまで測定終了後の結果データ保存用としてご使用下さい。

索引

- ボタン. データベース. 2-68 %, Amounts/Mol. Weights, 2-46 *.cst (較正データファイル), 2-40 *.grd (グリッドファイル), 3-13 *.log (コマンドログファイル), D-1 *.seq (シーケンスファイル), A-7 *.std (スタンダードファイル). 3-18 *.txt (測定値の保存形式), 2-57, 2-59 *.vws (表示設定ファイル), 2-57 [amount], Amounts/Mol. Weights, 2-35 [Backspace]キーでトレースを戻す, 5-9, A-12 [F2]キー, A-7 [F3]キー, A-7 [F4]キー, A-7 [F5]キー, A-8 [F6]キー, A-8 [F7]キー, A-8 [IOD], Amounts/Mol. Weights, 2-42 [max OD], Amounts/Mol. Weights, 2-43 [mol. w.], Amounts/Mol. Weights, 2-23 [Rel. Ab.], Amounts/Mol. Weights, 2-45 [X+], [X=], [X-], Lane Profile, 2-49 [Z+], [Z=], [Z-], Lane Profile, 2-49 +(バンドマーカ), 2-10 + ボタン, データベース, 2-68 1ボタン, データベース, 2-68 1D-Gel ツールパレット, 1-10, 2-2 1D-Gels(1次元ゲル解析)メニュー, A-5 1D-Gels, 1-10 1st odr Lagrange, Calibrating amounts from known dots, 3-18 1st odr polynomial, Calibrating amounts from known dots, 3-18 1st order Lagrange, Calibrating amounts from known bands, 2 - 391st order polynomial, Calibrating amounts from known bands. 2-39 1次元ゲルの解析.2-1 21 CFR Part 11対応機能. D-1 2nd odr Lagrange, Calibrating amounts from known dots, 3-18 2nd odr polynomial, Calibrating amounts from known dots, 3-18 2nd order Lagrange, Calibrating amounts from known bands, 2-39 2nd order polynomial, Calibrating amounts from known bands. 2-39

2値化, 画像を2値化してコロニーを抽出する, 4-11 3rd odr Lagrange, Calibrating amounts from known dots, 3-18 3rd odr polynomial, Calibrating amounts from known dots, 3-18 3rd order Lagrange, Calibrating amounts from known bands, 2-39 3rd order polynomial, Calibrating amounts from known bands, 2-39

A

Acquire(取り込み)メニュー, A-5 Add Background Lines, Background Correction, 2-31 Add Band Curve, 2-14 Add Bands, Bands, 2-11 Add Curves, Band Correction, 2-14 Add Dot, 3-10 Add Lanes, Lanes, 2-9 Add Line, Background Correction, 2-31 Add Records, Database, 2-69 Add Slant Line, Slant Correction, 2-21 Add Straight Lanes, 2-10 Add User Defined Type, 2-4 Add, Amount Calibrations, 2-40 Add, Dots, 3-10 Add/Change, Calibrating amounts from known bands, 2-37 Add/Change, Calibrating amounts from known dots, 3-16 Align grid with the lanes, arrows pointing toward the wells, 2-6 Allow Multiple Calibration Curves, Amounts/Mol. Weights, 2-39 Allow Multiple Calibrations, Area Density, 5-10 Allow Multiple Calibrations, Dot Blots, 3-19 Allow one missing band, M. W. Standard Options, 2-19 Allow two missing bands, M. W. Standard Options, 2-19 Always show background lines, Background Correction, 2-31 Always show mol. weight standard, 2-20 Always show Well Origin Line, 2-13 Amount Calibrations, 2-40 Amount loaded in lane, Lanes Loading, 2-33 Amount or IOD, Amounts/Mol. Weights, 2-42 Amount, Bands Options, 2-53 Amount, Lane and Band Labels, 2-53 Amounts Calibration Options, 2-24, 2-34, 2-38, 2-44 Amounts in, Calibrating amounts from known dots, 3-16 Amounts unit, Lanes Loading, 2-34 Amounts, Amounts/Mol. Weights, 2-38 Amounts/Mol. Weights ウィンドウの表内の数値と解析 画像内のバンドの位置関係、2-24

Amounts/Mol. Weights, 2-23 Angle Offset, 4-7 Angle, Select Measurements, Colony Counting, 4-7 Annotate (注釈) ボタン, A-3 AOI, 真円の楕円AOI, A-10 AOI, 正方形の矩形AOI, A-9 AOI (対象領域: Area of Interest), 1-3, A-2, A-8 AOIで測定領域を限定する, 2-8, 3-7 AOIIに関する解説, A-8 AOIの座標, ステータスバー, A-6 AOIの大きさを変える、AOIを変形する、1-5 Append Data to File, File, Amounts/Mol. Weights, 2-58 Append next data set to the bottom, DDE Options, 2-58 Append next data set to the right, DDE Options, 2-58 Apply Data Overlay, Apply to New Image, D-3 Apply Ranges, Colony Counting, 4-5, 4-8 Apply to New Image, Image Info Overlay, D-3 Apply, Contrast Enhancement, 1-7 Archive all open images into database, 2-69 Area Density Tool, 5-2 Area density, Function Type, 2-4 Area density, 5-3 Area Measurement, Area Density Tool, 5-6 Area of Interest (AOI), A-8 Area, Area Density Tool, 5-8 Area, Select Measurements, Colony Counting, 4-7 Area/Box , Select Measurements, Colony Counting, 4-7 Arrows on Peaks, Data Views, 2-56 Aspect Ratio, Spatial Calibration, C-3 Aspect, Select Measurements, Colony Counting, 4-7 Assign Calibration to bands, 2-40 Assign to all, Amount Calibrations, 2-40 Assign to areas, Amount Calibrations, 2-41 Assign to bands, Amount Calibrations, 2-40 Assign to dots, Amount Calibrations, 2-41 Audit trail, D-1 Auto Find, Colony Counting, 4-14 Auto Loc., Molecular Weight Standard, 2-19 Auto, Trace, A-12, A-13, A-14 Auto. Slant Lines, Slant Correction, 2-21 Automatic Bright Colonies, Colony Counting, 4-11 Automatic Dark Colonies, Colony Counting, 4-11 Axis (major), Select Measurements, Colony Counting, 4-7 Axis (minor), Select Measurements, Colony Counting, 4-7

B

Backgnd. Options, Dots, 3-14

Background Correction Wizard, ドットブロットの解析, 3-14 Background Correction, 1D-Gel, 2-30 Background correction, Dots, 3-14 Background dots, Dot Blot, 3-14 Background Lines, Data Views, 2-55 Background Values, Show, Dot Blots, 3-21 Background, 1D-Gel ツールパレット, 1-10, 2-30 Backspaceキーでトレースを戻す, 5-9, A-12 Band amount, Calibrating amounts from known bands, 2-37 Band Correction, 1D-Gel, 2-14 Band ID, Lane Profile, 2-49 Band Indicator, Data Views, 2-56 Band Label Colors, Data Views, 2-54 Band Label Position, Data Views, 2-55 Band numbers, Bands Options, 2-53 Band volume, Calibrating amounts from known bands, 2-37 Bands Options, Bands, 2-12 Bands, 1D-Gel ツールパレット, 1-10, 2-11 Baseline, Lane Profile Output Options, 2-60 Baseline, Lane Profile, 2-28, 2-49 BCGつまみ, 1-6 Best Contrast, 1-8 Best Fit Contrast, 1-8 Best Fit, Calibrating amounts from known bands, 2-38, 2-39 Both, Amounts/Mol. Weights, 2-23 Both, Show menu, Amounts/Mol. Weights, 2-37 bp, Create New Molecular Weight Standard, 2-18 Brackets, Data Views, 2-56 Bright bands, dark background, 2-14 Bright, Flatten Background, 4-9 Brightness Control, 1-6 Browse, Dynamic Data Exchange Options, 2-59

С

Calibrate, Amounts/Mol. Weights, 2-24, 2-37 Calibrate, Dot Blots ツールパレット, 1-11 Calibrated Mass, Dot Blots, 3-20 Calibrated Value, View, Area Density Tool, 5-10 Calibrating amounts from known bands, 2-37 Calibrating amounts from known dots, Dot Blots, 3-15 Calibration, Spatial Calibration, C-1 CFR, 21 CFR Part 11対応機能, D-1 Change, Molecular Weight Standard, 2-19 Circular Dots, Dots, 3-8 Close Original Image, Rotate, 2-6, 3-5 Cluster, Select Measurements, Colony Counting, 4-7 Col., Dots, 3-12 Colony Counting Options, 4-5 Colony Counting, 2-4, 4-2, 4-3 Colony.tif, 4-4 Color Channel, 2-1, 3-1, 4-1, 5-1 Color coding, Amounts Calibration Options, 2-26 Color coding, Rows and Columns Options, 3-24 Color Lane Text, Data Views, 2-55 Color Palette, Data Views, 2-54 Colorize Image (擬似カラー)ボタン, A-4 Component Colors, Data Views, 2-54 Contrast Control, 1-6 Contrast Enhancement, 1-6 Convert To, 2-1, 3-1, 4-1, 5-1 Could not find dish, 4-14 Could not load Excel. Please check path, 2-59 Count, Colony Counting, 4-12 Create New Molecular Weight Standard, 2-18 cst (較正データファイル), 2-40 Curve Bands, 2-14 Curve Lanes, 2-13

D

Dark bands, bright background, 2-14 Dark, Flatten Background, 4-9 Data Set, Colony Counting, 4-13 Data to Clipboard, File, Amounts/Mol. Weights, 2-59 Data To Clipboard, Lane Profile, 2-60 Data to File, File, Amounts/Mol. Weights, 2-57 Data To File, File, Lane Profile, 2-59 Data Views, 1D-Gel, 2-54 DDE Options, File, Amounts/Mol. Weights, 2-58 DDE to Excel, File, Amounts/Mol. Weights, 2-58 Define Lines of Equal Molecular Weight, 2-22 Define Region, Area Density Tool, 5-6 Define Well Origin, 2-12 Delete All Lines, Slant Correction, 2-22 Delete Background Lines, Background Correction, 2-31 Delete Bands, Bands, 2-11 Delete Dot, Dots, 3-10 Delete Iso-M.W. Lines, 2-22 Delete Line, Background Correction, 2-31 Delete Measurements, 濃度の測定, 5-9 Delete Slant Line, Slant Correction, 2-22 Delete, Area Density Tool, 5-9 Delete, Dots, 3-10 Delete, Experiment, 2-69 Density List, View, Area Density Tool, 5-10 Density Lum, Select Measurements, Colony Counting, 4-7 Description, Experiment, 2-4, 3-3, 4-3, 5-3 Diameter (ave), Select Measurements, Colony Counting, 4-7 Diameter, Dots, 3-8

Display Molecular Weight, Amounts Calibration Options, 2-24 Display presence/absence, Amounts Calibration Options, 2-26 Display the amount in each band as a function of, 2-34, 2-38, 2-44 Distribution, Colony Counting, 4-13 DNA analysis, 2-4 Dot blot analysis, 2-4, 3-3 Dot Blots ツールパレット, 1-11, 3-2 Dotblot.tif, 3-4 Dot-Blots (ドットブロット解析)メニュー, A-5 Dots, Dot Blots ツールパレット, 1-11 Dots, Dot Blots, 3-7 Dots/Slots shape & size, Dots, 3-8 Dotted Line, Data Views, 2-56 Draw/Merge Colonies, Edit, Colony Counting, 4-14 Dynamic Data Exchange Options, 2-58

E

Edit (編集) メニュー, A-5 Edit, Amount Calibrations, 2-40 End, Area Measurement, 5-8 End, Select Measurements, 4-8 Erase, Lane and Band Labels, 2-53 Excel, レーンプロファイルの元データをExcelへ出力す る, 2-61 Excel, 測定結果をExcelへ出力する, 2-58 Exit, 1-11 Experiment, 2-3, 3-2, 4-2, 5-2 Experimenter, Experiment, 2-4, 3-3, 4-3, 5-3

F

FDA, D-1 Field, Search, 2-67 File $(\neg \neg \neg \uparrow \mu) \not = \neg -$, A-5 Fill Color, Apply to New Image, D-3 Fill Grid Holes, Dots, 3-8 Fill Holes, 4-6 Filter area +/- (%), Dots, 3-8 Filter diameter (0 to 50% of lane length), 2-32 Filter Ranges, Select Measurements, Colony Counting, 4-8 Filtered Profile, 2-31 Filters, Colony Counting, 4-6, 4-8 Find Dots, Dots, 3-9 Find dots/slots, Dots, 3-8 Find Lanes, Lanes, 2-12 Find, Search, 2-67 Fit To Page, Print, File, 2-63
Fitting Method, Calibrating amounts from known bands, 2-38, 2-39
Fitting Method, Calibrating amounts from known dots, 3-17, 3-18
Fixed threshold (%), Dots, 3-8
Flat, Baseline, Lane Profile, 2-29
Flatten Background, Image, Colony Counting, 4-9
Font Settings, Image Info Overlay, D-2
Force equal amount in all, Lanes Loading, 2-33
Force straight lanes, 2-13
From Image, Baseline, Lane Profile, 2-30
Function Type, Experiment, 1-10, 1-11, 2-4, 3-3, 4-3, 5-3

G

Gamma Control, 1-6 Gel-Pro Analyzer のツール, 1-1, A-1 Gel-Pro Analyzer を起動する, 1-1 Gel-Pro Analyzer を終了する, 1-11 Gel-Pro Analyzerの画面, 1-2 Generate audit trail log, D-1 Genetic Material, Create New Molecular Weight Standard, 2-18 Graph To Clipboard, Lane Profile, 2-60 Graph, Molecular Weight Standard, 2-20 Graph, Show, Dot Blots, 3-25 grd (グリッドファイル), 3-13 Grid, Dots, 3-12

Η

Hatch Pattern, Data Views, 2-56 Help (ヘルプ)メニュー, A-5 Hide/Show Tool Bar, A-8

I

Image Archiving, 2-69 Image Database (画像データベース)ボタン, A-3 Image Info Overlay, D-2 Image Signature, Image Info Overlay, D-2 Image with Overlay, Insert, Report Generator, 2-62 Image, Colony Counting, 4-9 Image, Spatial Calibration, C-3 In Range, Colony Counting, 4-9 In rows of equal Mol. Weight, Amounts Calibration Options, 2-24 In rows of equal Rf, Amounts Calibration Options, 2-25 Increment position for next data set by, DDE Options, 2-58 Info, Edit, 1-9 Information, コンテキストメニュー, 1-9 Insert, Search, 2-67 Integrated Intensity, Dot Blots, 3-20 Integrated optical density (IOD), 2-42 Intensity Calib, Area Density Tool, 5-5 Intensity Calibration, Area Density, 5-5 Intensity Calibration, C-5 Invert Contrast, Edit, 1-7 IOD (integrated optical density), 2-42 IOD, Calibrating amounts from known dots, 3-16 IOD, Show, Dot Blots, 3-21 IODの測定, ドットブロットの解析, 3-21 iso-MW Lines, Data Views, 2-55

J

Join Valleys, Baseline, Lane Profile, 2-29

K

Kb, Create New Molecular Weight Standard, 2-18
kDa, Create New Molecular Weight Standard, 2-18
Keep region's shape, Measurement Options, Area Density Tool, 5-6, 5-9

L

Label Style, Colony Counting Options, 4-5 Labels, Lanes, 2-51 Lagrange, 2-39, 3-18 Lambda DNA/Hind III Fragments, 2-17 Lane +, Lane -, Lane Profile, 2-49 Lane and Band Labels, 2-51 Lane Bitmap, Plot, Lane Profile, 2-48 Lane Profile Output Options, 2-60 Lane Profile, 2-27 Lane Width (pixels), 2-14 Lanes Loading, 2-33 Lanes, 1D-Gel ツールパレット, 1-10 Lanes: Rows, Amounts/Mol. Weights, 2-52 Large Label Text, Data Views, 2-55, 2-56 Legend, Lane Profile Output Options, 2-60 Less ボタン, 1-7 List, Search, 2-67 List, Show, Dot Blots, 3-20, 3-22 Load Calibration Curve (IOD + Mass), 3-18 Load Dot Pattern, 3-13 Load Previous Pattern, File, Dots, 3-11 Load Set, Amount Calibrations, 2-40 Load Standard Dots (Mass + Dot #), 3-18 Load, Data Views, 2-57

Loads, Amounts/Mol. Weights, 2-33 Locate, Molecular Weight Standard, 2-20 Lock Dots, Dots, 3-9, 3-12 log (コマンドログファイル), D-1 Log. display, Calibrating amounts from known dots, 3-17 Look for, Lanes, 2-12

Μ

M. W. Standard Options, 2-19 M. W. Standard, 1D-Gel ツールパレット, 1-10 Macro Editor (マクロ編集)ボタン, A-4 Macro Management (マクロ)ボタン, A-4 $Macro(\neg p \neg p) \lor \neg \neg \neg A-5$ Magic Wand, 5-6, A-15 Magic Wandツールで画像内をトレースして濃度を測定 する.5-6 Make Grid, Dots, 3-12 Manual positioning only, M. W. Standard Options, 2-19 Manual, Colony Counting, 4-5, 4-11 Marker Lane Colors, Data Views, 2-54 Mass Amount, Calibrating amounts from known dots, 3-16 Mass/IOD, Dot Blots ツールパレット, 1-11 Mass/IOD, Dot Blots, 3-19 Match band for band, M. W. Standard Options, 2-19 Match, Amounts/Mol. Weights, 2-25 Match, Show, Dot Blots, 3-24 Max, Statistics, Colony Counting, 4-13 Max. Feature Size, Flatten Background, 4-9 max. OD (最大光学濃度)を算出する, 2-43 max. OD, Amounts/Mol. Weights, 2-43 Max., Statistics, Area Density Tool, 5-10 Maximum baseline slope (1 to 100%), 2-29 Maximum Intensity, View, Area Density Tool, 5-10 Maximum OD, Show, Dot Blots, 3-22 Mean Background, View, Area Density Tool, 5-10 Mean Density (OD), Area Density Tool, 5-8 Mean Raw Density, View, Area Density Tool, 5-10 Mean, Statistics, Area Density Tool, 5-10 Mean, Statistics, Colony Counting, 4-13 Measure Colonies, Colony Counting, 4-5, 4-8 Measurement Options, Area Density Tool, 5-6 Measurements, Select Measurements, Colony Counting, 4-7 Min, Statistics, Colony Counting, 4-13 Min. band height, 2-12 Min., Statistics, Area Density Tool, 5-10 Minimum Intensity, View, Area Density Tool, 5-10 Minimum OD, Show, Dot Blots, 3-22 Mol. Weight, Lane and Band Labels, 2-53

Molecul. Weight, Create New Molecular Weight Standard, 2-18 Molecular Weight Standard /Rt., 2-17, 2-18 Molecular Weight Standard, 2-16 Molecular Weight, 2-15 Molecular Weight, Amounts/Mol. Weights, 2-23 Molecular Weight, Bands Options, 2-53 Molecular Weight, Lane Profile Output Options, 2-60 More> ボタン, 1-7

Ν

NEW AOI (新規AOI), 1-3 New AOIボタン, A-2 New Report, Report Generator, 2-61 New Template, New Report, 2-62 New, Intensity Calibration, 5-5 New, Spatial Calibration, 5-5 New, Spatial Calibration, C-2 Next Image, A-7 Next M. W., Define Lines of Equal Molecular Weight, 2-22 Noise, Trace, A-14 None, Baseline, Lane Profile, 2-29

0

Object #, Colony Counting Options, 4-5 Open (開く)ボタン, A-3 Open, Experiment, 2-66 Operator, Search, 2-67 Optimize image (最適合わせ込み)ボタン, A-4 Options, Area Density Tool, 5-6 Options, Colony Counting, 4-5 Options, Molecular Weight Standard, 2-19 Or display band, Lane and Band Labels, 2-53 Outline clear of the dot, 3-14 Outline close to the dot, 3-14 Outline Style, Colony Counting Options, 4-5 Output Options, Lane Profile, 2-60 Overlay Position, Apply to New Image, D-3

Ρ

Packed, Amounts Calibration Options, 2-25 Path, Dynamic Data Exchange Options, 2-59 Percent (%), Rows and Columns Options, 3-23 Perimeter, Select Measurements, Colony Counting, 4-7 pl, Create New Molecular Weight Standard, 2-18 Pixels/Unit, Spatial Calibration, C-3 Place label to, Lanes and Band Labels, 2-52 Plot, Lane Profile, 2-47, 2-48 Polynomial Fit Line, Well Origin, 2-13 Polynomial Fit Slant, Slant Correction, 2-21, 2-22 Polynomial, Calibrating amounts from known bands, 2-39 Position Molecular Weight Standard, 2-20 Preference Views, 1D-Gel ツールパレット, 1-10, 2-54 Preferences, Edit, D-1 Pre-Filter, Colony Counting Options, 4-6 Prev. Image, A-7 Print Graph, File, Lane Profile, 2-61 Print Overlay, Print, File, 2-63 Print Screen, A-8 Print(印刷)ボタン, A-3 Print, File, 2-63 Print, File, Amounts/Mol. Weights, 2-59 Profile minus baseline, 2-28, 2-32 Profile Options, Data Views, 2-56 Program will reposition the dots, 3-12 Protein analysis, Experiment, 2-4

R

Range, Magic Wand, 5-7, A-16 Range, Statistics, Area Density Tool, 5-10 Range, Statistics, Colony Counting, 4-13 Ranges, Colony Counting, 4-11 Ratio to Band/Lane, Amounts/Mol. Weights, 2-24 Ratio to Band/Lane, Calibrate, Amounts/Mol. Weights, 2-34, 2-38, 2-44 Ratio, Rows and Columns Options, 3-23 Readme (Release Notes), 1-1 Record Macro (マクロの自動記録)ボタン, A-4 Reference represents how many units?, Spatial Calibration, C-3 Region, Area Density Tool, 5-8 Rel. ab. (relative abundance), Amounts/Mol. Weights, 2-43 Rel/bands, Amounts/Mol. Weights, 2-36 Release Notes, 1-1 Remove/Show Colonies, Edit, Colony Counting, 4-13 Repeat region selection, Measurement Options, 5-6 Report Generator, 2-61 Reports, 1D-Gel ツールパレット, 1-10 Reset Contrast, 1-7, 1-8 A-4 Reset Lines, Background Correction, 2-31 Resize, Edit, 1-5 Results, 1D-Gel ツールパレット, 1-10, 2-23 Retain the largest, 2-12 RNA analysis, 2-4 ROI (AOI), A-8

Rolling disk radius (0 to 100% of lane length), 2-28, 2-32 Rolling Disk, 2-28, 2-32 Rotate, 1D-Gel ツールパレット, 1-10, 2-6 Rotate, Dot Blots ツールパレット, 1-11, 3-5 Roundness, Select Measurements, Colony Counting, 4-7 Row Band Expression, 2-52 Row Band Graph, Show, Amounts/Mol. Weights, 2-52 Rows and Columns Options, Show, Dot Blots, 3-22, 3-23 Rows and Columns, Show, Dot Blots, 3-20, 3-22 Rows, Dots, 3-12 Run automatic colony counting?, 4-14

S

Samples, Statistics, Area Density Tool, 5-10 Samples, Statistics, Colony Counting, 4-13 Sampling, Dot Blots, 3-25 Save Calibration Curve (IOD + Mass + Dot #), 3-18 Save Calibrations, C-5 Save Dot Pattern, 3-13 Save New, Experiment, 2-65, 3-27, 4-16, 5-11 Save Set, Amount Calibrations, 2-40 Save to Image Database, 2-69 Save(上書き保存)ボタン, A-3 Save, 1D-Gel ツールパレット, 1-10 Save, Area Density Tool, 5-11 Save, Colony Counting, 4-15 Save, Data Views, 2-57 Save, Dot Blots ツールパレット, 1-11, 3-26 Scaling, Spatial Calibration, C-3 Scan (スキャン)ボタン, A-3 Scan, Acquire, B-1 Screen Capture, A-8 Search For, Search, 2-67 Search, Database, 2-66 Segmentation, Colony Counting, 4-11 Select Area, Colony Counting, 4-10 Select Background dots, 3-14 Select Measurements, Colony Counting, 4-6, 4-8 Select Scanner, Acquire, B-1 Select/Unsel, Molecular Weight Standard, 2-16 Selected Settings, Image Info Overlay, D-2 seq (シーケンスファイル), A-7 Sequence Tools, A-7 Show all lanes, Plot, Lane Profile, 2-47, 2-48 Show band extents., Bands Options, 2-54 Show Corrected Image, Background Correction, 2-31 Show Data, Layout, Report Generator, 2-62 Show Graph, 1D-Gels, 2-27, 2-46 Show multiple lanes, Plot, Lane Profile, 2-47, 2-48

Show Overlay on Image, Image Info Overlay, D-2 Show Overlay on Print, Image Info Overlay, D-2 Show single lane, Plot, Lane Profile, 2-48 Show ToolBar, 1D-Gels, 1-10 Show ToolBar, Dot-Blots, 1-11 Show, Amounts/Mol. Weights, 2-23 Signiture, Image Signature, Image Info Overlay, D-2 Single band analysis, Experiment, 2-4 Single lane, Lane Profile Output Options, 2-60 Slant Correction, 1D-Gel, 2-21 Slant Lines, Data Views, 2-55 Slant, 1D-Gel ツールパレット, 1-10 Slant, 1D-Gel, 2-20 Slant.tif, 2-5 Smooth, Magic Wand, A-16 Smooth, Trace, A-14 Sort, Dots, 3-11, 3-21, 3-22, 3-26 Spatial Cal..., C-2 Spatial Calibration, C-1 Speed, Trace, A-14 Split Colonies, Edit, Colony Counting, 4-14 Spots.tif, 5-4 Sqr. Error, Calibrating amounts from known bands, 2-39 Standard band finding sensitivity, M. W. Standard Options, 2 - 19Standard Calibration Curve, Calibrate, Amounts/Mol. Weights, 2-37 Standard Lanes, Molecular Weight Standard, 2-16 Start, Select Measurements, Colony Counting, 4-8 Statistics, Colony Counting, 4-13 Statistics, View, Area Density Tool, 5-10 std (スタンダードファイル), 3-18 Std. Dev, Statistics, Colony Counting, 4-13 Std. Dev., Statistics, Area Density Tool, 5-10 Std. Optical Density, Intensity Calibration, 5-5 Subtract baseline, Lane Profile Output Options, 2-60 Sum, Statistics, Area Density Tool, 5-10

Т

The amount in band on row ..., in the lane The amount in the same band in lane, 2-44 The amount loaded in the lane., 2-34, 2-39 The band in lane: ..., row:, 2-45 The standard calibration curve., 2-38, 2-39 The value of the corresponding dot in column, 3-23 The value of the corresponding dot in column, Rows and Columns Options, 3-24 The value of the corresponding dot in row, Rows and Columns Options, 3-23, 3-24 Thresh, Trace, A-14 Title, 2-3, 3-3, 4-3, 5-3 Tools (ツール)メニュー, A-5 Total Background, View, Area Density Tool, 5-10 Total Count, Colony Counting, 4-9 Total Density (OD), Area Density Tool, 5-8 Total Raw Density, View, Area Density Tool, 5-10 Trace, 5-7, 5-8, A-11 Trace, y-, y-,

U

undet., 2-45 Undo (アンドゥ)ボタン, A-3 Uniform Lane Width, 2-14 Update, Dot Blots, 3-26 Update, Lane Profile, 2-49 Use the background correction method in version 3.0 to guarantee results consistent with those obtained with that version, 3-14

V

Values are equivalent if ... %, 3-25 Video/Digital (ビデオ/デジタル)ボタン, A-3 View 1D-Gel Tool Bar (1D-Gelツールパレットを表示)ボ タン, A-4 View Area Density Tool (濃度測定ツールを表示)ボタン , A-4 View Colony Counting Tool (コロニーカウンティングツー ルを表示)ボタン, A-4 View Dot Blots Tool Bar (Dot Blotsツールパレットを表示) ボタン, A-4 View Settings, Data Views, 2-55 View, Area Density Tool, 5-10 View, Colony Counting, 4-13 vws (表示設定ファイル), 2-57

W

Wand, A-15 Well Origin Line, 2-55 Well Origin, 1D-Gel ツールパレット, 1-1, 2-12 Window (ウィンドウ)メニュー, A-5 Workspace '...' has not been saved..., 3-6, 3-28, 5-12

Х

X-Zoom MW Lines, Data Views, 2-55

Ζ

Zoom In, コンテキストメニュー, 1-9 Zoom Out, コンテキストメニュー, 1-9 Zoom, コンテキストメニュー, 2-50

あ行

空きメモリ、ステータスバー、A-6 あてはめ関数、スマイリング補正、2-21、2-22 あてはめ方式、較正曲線による較正、1次元ゲルの 解析 2-39 あてはめ方式,ドットの質量の較正,ドットブロットの解 析. 3-18 穴を埋める.4-6 アプライ量による較正,2-33 アプリケーションウィンドウ, 1-2 1次元ゲルの解析, 2-1 1次元ゲル解析,質量(マス)の測定,2-27 1次元ゲル解析,分子量の測定,2-23 色成分選択ボタン, 1-7 色分け表示,等分子量のバンドのマッチング,2-26 印刷.画像を印刷する.2-63 印刷,測定結果をプリンタで印刷する,2-59 印刷. レーンプロファイルを印刷する. 2-61 ウェル位置の補正.2-12 ウェル位置の補正線.2-55 オーバーレイ, 2-61, 2-63 オプションの設定,コロニーカウンティング,4-5

か行

カーソルの位置, ステータスバー, A-6 解析のタイプ, 2-4, 3-3, 4-3, 5-3 外接四角形, A-17 外部へ出力, 画像をオーバーレイとともにワープロな どの外部ソフトへ出力する, 2-61 カウンティング, コロニーカウンティング, 4-1 カウント結果, コロニーカウンティング, 4-12 カウント, 自動カウント, コロニーカウンティング, 4-12 カウント, 自動カウント, コロニーカウンティング, 4-12 拡大・縮小, 画像の表示の拡大・縮小, 1-5, 2-50 角度オフセット, C-2 角度の較正, C-2 角度, コロニーカウンティングの測定項目, 4-7 画像ウィンドウ, 1-8 画像情報を画像に書き込む, D-3

画像情報を画像に重ね表示する、D-2 画像内のコロニーをカウントする、4-1 画像内の領域をトレースして濃度を測定する、5-6、5-8 画像の傾きの補正、1次元ゲル解析、2-6 画像の傾きの補正, ドットブロットの解析, 3-5 画像のサイズ,ステータスバー, A-6 画像の署名, D-2 画像の鮮明化, 2-7 画像の表示を拡大・縮小, 1-5, 2-50 画像の要件、1次元ゲルの解析、2-1 画像の要件、コロニーカウンティング、4-1 画像の要件、ドットブロットの解析、3-1 画像の要件,濃度の測定,5-1 画像を印刷する, 2-63 画像をオーバーレイとともにクリップボードへコピーす る(画像をワープロなどへ出力する), 2-61 画像をグレイスケールに変換,2-1,3-1,4-1,5-1 画像をスキャナで取り込む, B-1 画像を2値化してコロニーを抽出する、4-11 画像を開く/画像の前処理、1次元ゲルの解析、2-5 画像を開く/画像の前処理,ドットブロットの解析, 3-4 画像を開く、コロニーカウンティング、4-4 画像を開く,濃度の測定,5-4 画像を平坦化する.4-9 傾き、画像の傾きの補正、1次元ゲル解析、2-6 画面印刷, A-8 画面取り込み設定,A-8 画面, Gel-Pro Analyzerの画面, 1-2 カラーマップ,1-7 監査証跡, D-1 ガンマ補正つまみ,1-6 基準オブジェクト,空間較正, C-3 基準ドット列. 3-23 基準ドット. 3-15 基準バンド, 2-26, 2-43 基準レーン, 2-25 既知の質量を持つバンド,2-36 既知の質量を持つドット, 3-15 起動, Gel-Pro Analyzer を起動する, 1-1 輝度測定の単位,ステータスバー,A-6 輝度つまみ,1-6 輝度のムラを除去する.4-9 輝度のムラ.4-4 ギャラリ表示、データベース、2-68 キャリブレーション(空間較正), C-1 菌のコロニーをカウントする、4-1 空間測定の単位、ステータスバー、A-6 空間較正, C-1 矩形AOI ツール, A-9

矩形AOIボタン, A-2 矩形AOI, 1-3, 2-8, A-9 クラスタ内個数、コロニーカウンティングの測定項目、 4-7 グラバツール(パンツール), 1-6 グラフ,測定結果をグラフで表示する、ドットブロットの 解析, 3-25 グラフ、バンドの横列の測定値をグラフで表示する、2-52 グリッド線、画像の傾きの補正、3-5 グリッド、ドットのグリッド全体の位置と大きさを修正す る. 3-12 グリッド、ドットのグリッドを手動で作成する、3-12 グリッド、ドットのグリッドを保存、再呼び出しする、3-13 クリップボード、レーンプロファイルをクリップボードに コピーする 2-60 クリップボード,画像をオーバーレイとともにクリップボ ードヘコピーする、2-61 クリップボード、測定結果をクリップボードにコピーす る、2-59 グループ化, ドットのグループ化を行なう, 3-25 グレイスケール画像, 2-1, 3-1, 4-1, 5-1 計数, コロニーの計数(カウンティング), 4-1 検索、データベース、2-66 減算、バックグラウンドの減算、1次元ゲル解析、2-27 検出感度、レーン・バンドの検出感度、2-12 原点の較正.C-2 検量線, 2-36, 2-38, 3-15, 3-16 検量線,濃度の較正,5-5 較正,アプライ量による較正,2-33 較正曲線グラフを拡大・縮小表示する、ドットの質量 の較正.3-17 較正曲線グラフを対数表示にする、ドットの質量の較 正, 3-17 較正曲線(検量線), 濃度の較正, 5-5 較正曲線による較正、1次元ゲル解析、2-36 較正曲線, 2-36, 2-38, 3-15 較正,空間較正,C-1 較正スケールの貼り付け、C-2 較正済みの質量(マス),濃度の測定,5-10 較正データの保存.2-40 較正データをファイルに保存する/再呼び出しする,ド ットの質量の較正,3-18 較正データを右クリックで適用 2-41 較正, ドットの質量の較正, 3-15 較正,濃度の較正を行なう,5-5 較正,複数の較正データを使用する,2-39,3-19,5-10 較正、分子量スタンダードによる較正、2-16 コマンドツールボタン, 1-3, A-1

コマンドログ, D-1 コロニーカウンティング, 4-1 コロニーカウンティングの測定項目, 4-7 コロニーカウンティングを完全自動で行なう, 4-14 コロニーの選別を行なう, 4-8 コロニーの測徴を行なう, 4-6 コロニーを自動でカウントする, 4-14 コンテキストメニュー, 画像ウィンドウ, 1-9 コントラスト強調ツール, 1-6 コントラストやまみ, 1-6 コントラストをリセット ボタン, 1-8 コントロールメニュー, 画像ウィンドウ, 1-8

さ行

最小輝度(濃度),濃度の測定,5-10 最大輝度(濃度),濃度の測定,5-10 最大光学濃度を算出する,2-43 最大・最小光学濃度の測定、ドットブロットの解析、3-22 最適合わせ込みボタン, 1-8, 2-7 サムネイル, データベース, 3-27, 2-65, 4-16 サムネイルのサイズを変更する, 2-68 シーケンスファイル. A-7 シェーディング.4-4 シェーディング補正(輝度ムラの除去). 4-9 四角形面積比、コロニーカウンティングの測定項目、4-実験データの入力,1次元ゲル解析,2-3 実験データの入力、コロニーカウンティング、4-2 実験データの入力、ドットブロットの解析、3-3 実験データの入力,濃度の測定,5-2 質量の較正、複数の較正データを作成する、2-40 質量の測定,1次元ゲル解析,2-27 自動カウント, コロニーカウンティング, 4-14 自動でコロニーカウンティングを行なう, 4-14 自動2値化, コロニーカウンティング, 4-11 シャーレ.4-4 シャーレの範囲を囲む、コロニーカウンティング、4-10 周囲長、コロニーカウンティングの測定項目、4-7 自由曲線AOIツール, A-11 自由曲線AOIをトレースツールで作成する. A-11 自由曲線AOIをマジックワンドツールで作成する, A-15 自由曲線AOIボタン, A-2 十字形カーソル.2-11 終了する, Gel-Pro Analyzer を終了する, 1-11 縮小・拡大,画像の表示を縮小・拡大,1-5,2-50 出力,画像をプリンタへ出力する,2-63 出力,画像をオーバーレイとともにワープロなどの外 部ソフトへ出力する, 2-61

初期設定コマンド, D-1 真円度, コロニーカウンティングの測定項目, 4-7 新規AOIボタン, A-2 新規AOI, 1-3 垂直線マーカ, 4-11 ズームツール, 1-5, 2-50 スキャナ,画像をスキャナで取り込む, B-1 ステータスバー, 1-8, A-6 スマイリング補正, 2-20 スマイリング補正線, 2-55 スマイリング補正線を削除する、2-22 スマイリング補正線を手動で引く.2-21 スミア、3-6 寸法の較正, C-1, C-2 積分光学濃度の測定、ドットブロットの解析、3-21 積分光学濃度(IOD)の測定, 2-42 選別, コロニーの選別を行なう, 4-8 選別レンジ,4-8 操作の概要,1次元ゲル解析,2-2 操作の概要、コロニーカウンティング、4-1 操作の概要, ドットブロットの解析, 3-1 相対量の基準,1次元ゲル解析,2-44 相対量の算出,1次元ゲル解析,2-43 相対量の測定、ドットブロットの解析、3-22 ソースの選択、TWAINスキャナで画像を取り込む、B-1 測徴、コロニーの測徴を行なう、4-6 測定結果ウィンドウ、ドットブロットの解析、3-20 測定結果、コロニーカウンティング、4-12、4-13 測定結果のウィンドウ.2-23 測定データをExcelへ転送する、2-58 測定結果を外部へ出力する、1次元ゲル解析、2-57 測定結果をグラフで表示する、ドットブロットの解析、3-25 測定結果をクリップボードにコピーする、2-59 測定結果をテキストファイルに追記する、2-58 測定結果をプリンタに出力する、2-59 測定項目、コロニーカウンティング、4-6 測定,最大光学濃度を算出する,2-43 測定,最大・最小光学濃度の測定,ドットブロットの解 析, 3-22 測定,質量(マス)の測定,3-19 測定,積分光学濃度の測定,1次元ゲル解析,2-42 測定,積分光学濃度の測定、ドットブロットの解析、3-21 測定,相対量の測定,ドットブロットの解析,3-22 測定対象領域とバックグラウンド両方の合計積分光 学濃度,濃度の測定,5-10 測定対象領域とバックグラウンド両方の平均濃度濃 度の測定,5-10

測定 濃度の測定 5-1 測定範囲を限定する、コロニーカウンティング,4-10 測定,分子量の測定,2-23 測定領域の限定 – ドットの検出, 3-6 測定領域の限定,1次元ゲル解析,2-7 た行 ダイアログボックスのチェックボタン.1-9 対象領域(AOI), A-8 タイトルバー, 1-2 楕円AOIツール, A-10 椿円AOIボタン. A-2 楕円長短軸比,コロニーカウンティングの測定項目,4-楕円の短軸、コロニーカウンティングの測定項目、4-7 楕円の長軸、コロニーカウンティングの測定項目、4-7 縦横比の較正, C-2 谷マーカ, 2-13 谷マーカの表示を変更する, Data Views, 2-56 谷マーカ,レーンプロファイル, 2-49 単位あたりピクセル数.C-2 単一画像表示, データベース, 2-68 単一フレームボタンと複数フレームボタン, A-7 チェックボタン.1-9 直径(平均)].コロニーカウンティングの測定項目.4-7 ツール, Gel-Pro Analyzer のツール, 1-1, A-1 ツールバー, 1-3, A-1 ツールバーを切り離す, A-1 ツールパレット.1-10 定義線,空間較正,C-3 定量,1次元ゲル解析,2-15 定量,ドットの定量,3-19 データベース. 2-64 データベースから測定結果を開く,2-65 データベースに画像のみを登録する,2-69 データベースに全画像を登録する、2-69 データベースに測定結果を保存する,コロニーカウン ティング, 4-15 データベースに測定結果を保存する、ドットブロットの 解析.3-26 データベースに測定結果を保存する、濃度の測定、5-11 データベースに測定結果を保存する、2-64 データベースのデータを削除する,2-69 データベースボタン.2-66 適用ボタン,1-7 デジタル署名, D-2 電子署名, D-1, D-2 同一形状の測定領域を連続測定する,5-9
統計データ、ドットブロット解析、3-20 統計データ、濃度の測定、5-10 等分子量線, 2-55 度数分布ヒストグラム、コロニーカウンティング、4-13 ドットのグリッド全体の位置と大きさを修正する,3-12 ドットのグリッドを手動で作成する, 3-12 ドットのグリッドを保存,再呼び出しする,3-13 ドットのグループ化を行なう、3-25 ドットの検出、ドットブロットの解析、3-7 ドットの質量の較正,3-15 ドットの自動検出.3-9 ドットの直径を指定する.3-8 ドットの番号が乱れたとき、3-26 ドットブロットの解析, 3-1 ドット枠, 3-9 ドット枠の位置を修正する、3-9 ドット枠の色.3-9 ドット枠の大きさを変更する,3-10 ドット枠を削除する,3-10 ドットを手動で検出する.3-10 取り込み,画像をスキャナで取り込む,B-1 トレース線を戻す.5-9

な行

2値化, 画像を2値化してコロニーを抽出する, 4-11 2値化, 自動2値化, コロニーカウンティング, 4-11 日本語の使用制限, 2-3, 3-3, 4-3, 5-3 濃度断面, 2-46 濃度の較正を行なう, 濃度の測定, 5-5 濃度の測定, 5-1

は行

パーセンテージ,相対量を%で算出する,2-46 バックグラウンドの補正 1次元ゲル解析 2-27 バックグラウンド部分の積分光学濃度,濃度の測定, 5-10 バックグラウンド部分の平均光学濃度、濃度の測定、 5-10 バックグラウンド補正オプション、ドットブロットの解析、 3-14 バックグラウンド補正線、1次元ゲル解析、2-55 バックグラウンド補正線を引く、1次元ゲル解析、2-31 バックグラウンドを除く積分光学濃度 (IOD), 濃度の測 定, 5-8 バックグラウンドを除く平均光学濃度,濃度の測定,5-8 バックスペースキー, 5-9, A-12 パンツール, 1-6 反転ボタン, 1-7

バンドに任意のラベルを付ける。2-53 バンドの横列の測定値をグラフで表示する, 2-52 バンドの検出, 2-7, 2-11 バンドのピークの範囲を表示させる、2-54 バンドのピークの範囲を調節する, 2-13 バンドマーカ, 2-10 バンドマーカの位置を変更する, 2-13 バンドマーカ、バンドマーカを追加する、2-11 バンドマーカ、不要なバンドマーカを除去する、2-10 ハンドル、レポートジェネレータ、2-62 バンド,湾曲したバンドを検出,2-14 ピークの範囲を調節する、2-13 ピクセルの値、ステータスバー、A-6 ヒストグラム、2値化、コロニーカウンティング、4-11 ヒストグラム、度数分布ヒストグラム、コロニーカウンテ ィング, 4-13 表示オプションを使用する, 2-50 表示サイズ, 1-5 表示設定を保存して再呼び出しする、2-57 標準光学濃度, Intensity Calibration, 5-5 ファンクションキー, A-7 フィッティング関数,スマイリング補正,2-21,2-22 フィッティング関数,較正,2-39,3-18 複数の較正データセットを使用する、2-39、3-19、5-10 複数フレームボタン, A-7 不要なバンドマーカを除去、2-10 プリント、レーンプロファイルをプリントする、2-61 プリント、測定結果をプリントする、2-59 プレースホルダ,2-62 フローティングパレット, A-1 分子量スタンダードの値を変更する、2-19 分子量スタンダードの選択, 2-17 分子量スタンダードのマーカを自動位置決めする時 の感度調節,2-19 分子量スタンダードのマーカを手動で位置決めする、 2-20 分子量スタンダードのマーカ, 2-17 分子量スタンダードをグラフ表示する, 2-20 分子量スタンダードを新規作成する,2-18 分子量スタンダードによる較正,2-16 分子量の算出,2-23 分子量の測定,1次元ゲル解析,2-15 分子量マーカ, 2-16 平均輝度、コロニーカウンティングの測定項目、4-7 平坦化,画像を平坦化する,4-9 ベースライン、レーンプロファイル、2-28 変換,画像をグレイスケールに変換,2-1,3-1,4-1,5-1 保存,較正データを保存,2-40 保存,測定結果を保存する、1次元ゲル解析、2-57

保存, データベースに測定結果を保存する, コロニー カウンティング, 4-15 保存, データベースに測定結果を保存する, ドットブロ ットの解析, 3-26 保存, データベースに測定結果を保存する, 濃度の測 定, 5-11 保存, データベースに測定結果を保存する, 1次元ゲ ル解析, 2-64 保存, 表示設定を保存して再呼び出しする, 2-57 保存, レーンプロファイルの元データをファイルに保存 する, 2-59 ボタン, コマンドツールボタン, 1-3, A-3 **ま 行** マウスドラッグで画像内をトレースして濃度を測定す る, 5-8

る, 5-8
マジックワンド, 5-6
マスの測定, 1次元ゲル解析, 2-27
マッチング, 等分子量のバンドの、レーン間でのマッチ ングを調べる, 2-25
マッチング, ドットブロットの解析, 3-24
マッチングの基準, 等分子量のバンドのマッチング, 2-26
魔法の杖のカーソル, 5-7, A-15
虫メガネ形カーソル, 2-50
メッセージバー, ステータスバー, A-6
メニューバー, 1-2, A-5
面積, コロニーカウンティングの測定項目, 4-7
面積, 濃度の測定, 5-8

や行

横向き,レーンプロファイルの下にレーンの画像を横 向きに表示する,2-48 四方向カーソル,2-10

ら行

ラベルの文字色を変更する,2-54 ラベルの文字を大きくする,2-55 ラベル,バンドに測定値をラベルとして付ける,2-53 ラベル,バンドに任意のラベルを付ける,2-53 ラベル,レーンに任意のラベルを付ける,2-51 リセットボタン,コントラスト強調,1-7 リセットボタン,リミットチェック,1-9 リプリケート,3-25 リミットチェックボタン,1-9 粒子の濃度を測定する,5-4 レーン・バンドの検出,2-7

レーンのラベルを削除する, 2-53 レーン・バンドの検出感度を調節する、2-12 レーンプロファイル、2-27 レーンプロファイルの下にレーンの画像を表示する, 2-48 レーンプロファイルの出力オプション, 2-59 レーンプロファイルの元データをExcelへ出力する、2-61 レーンプロファイルの元データをファイルに保存する、 2-59 レーンプロファイルのラベル表示を変更する。2-56 レーンプロファイル、複数のプロファイルを重ね表示 する、2-47、2-48 レーンプロファイルをクリップボードにコピーする、2-60 レーンプロファイルを操作する、2-46 レーンプロファイルをプリンタに出力する, 2-61 レーン,湾曲したレーンを検出,2-13 レーンを手動で追加, 2-9 レポートジェネレータ, 2-61 レンジ,選別レンジ,4-8 ローリングディスク, 2-28, 2-32

レーンの位置と幅を変更する, 2-14

ログ, コマンドログ, D-1

わ行

湾曲したバンドを検出, 2-14 湾曲したレーンを検出, 2-13 ワンド, 5-6

ライセンスについて

プログラムを納めたディスクもしくはCD-ROM (これ以降「プログラム媒体」と略します)、またはマニュアル類の保 護カバーを開封する前に、本ライセンス契約書をお読み下さい。プログラム媒体またはマニュアル類を開封され た場合は、お客様が、本ライセンス契約(個人・エンドユーザライセンス契約)の条件に同意されたものと見なしま す。本ライセンスの条件に同意されない場合は、本製品を、保護カバーを開封せずに、レシートのコピーを添付し て、Media Cybernetics, Inc.または日本での販売元(株)プラネトロン(これ以降Mediaと記します)宛に至急ご返送下 さい。ライセンス料をお返し致します。

プログラムに対するライセンス

Mediaは、ソフトウェア、プログラム媒体、コピープロテクトキー(不正コピー防止キー)、およびマニュアルを含む Gel-Pro Analyzer for Windows(これ以降、総称的に「本製品」と記します)を複製、出版、販売、ライセンス供与す る、および流通させる世界的な権利を所有します。所望の結果を得るために本製品を採用された責任、および本 製品をインストールして使用される責任は、お客様(ライセンス所有者)が負われるものとします。

ライセンスの供与

本ライセンスにより、Mediaは、ライセンス所有者(お客様)が本ライセンスの条件に従い、本製品を非独占的に1個 人として単独に使用されることを認めます。ライセンス所有者による以下の行為は許可されています。

- ライセンス所有者が所有、借用、あるいはその他の方法で管理している1台のワークステーションで本製品を 使用すること。この場合、ネットワーク接続されているか、その他のコンフィギュレーションが設定されているか は問いません。
- 2. 1台のワークステーションで本製品を使用する予備として、本製品のバックアップ・コピーを1つ作成すること。
- 3. 1台のワークステーションで使用するために、本製品を他のプログラムに組み込むこと(組み込まれた本製品の あらゆる部分は、組み込み後も本ライセンスの条件の適用対象となります)。
- 4. 以下の条件が満たされた場合に、本ライセンスを第3者に譲渡すること。
 - a) その第3者が本ライセンスの条件に同意した場合
 - b) Mediaが、書面により譲渡を承認した場合

本製品を譲渡する場合は、譲渡と同時に、本製品の全てのコピー、および他のプログラムに組み込まれた本製品 のあらゆる部分を譲渡先に引き渡すこととします。

本製品の全てのコピー、および他のプログラムに組み込まれた本製品のあらゆる部分には、Mediaの商標と著作権の注意書きを必ず複製して添付することとします。

ライセンス所有者による以下の行為は禁止されています。

- 1. 本製品、または他のプログラムに組み込まれた本製品の部分を、同時に複数のワークステーションで使用する こと。
- 上記4.で明示的に許可されている以外の第3者に、本製品、本ライセンス、他のプログラムに組み込まれた本製品の部分のいずれかでも、これを複製、貸与、配布、販売、ライセンス、サブライセンス、ないし譲渡すること。

Mediaの権利

本製品には、著作権、商標、企業秘密に関するアメリカ合衆国国内法および国際法、ないし協定によって保護さ れた、Mediaの所有する資料が含まれていることを、ライセンス所有者は承認し、これに同意するものとします。本製 品に関わる一切の権利、利益はMediaに帰属します。本ライセンスにより、本製品に関わる一切の権利、利益はラ イセンス所有者に供与されません。本ライセンスにより供与されるのは、本ライセンスに規定された仕方で終了され 得る、制限付きの使用権のみです。ライセンス所有者は、本ライセンスにより明確に許可された以外の仕方で本製 品が使用されたり、複製ないし配布されることを防止するために、最大限の努力を払うこととします。

ライセンスの条件

本ライセンスは、終了されるまで有効です。ライセンス所有者は、(コピープロテクトキーを含む)本製品を、本製品 のあらゆるコピー、他のプログラムに組み込まれた本製品のあらゆる部分(およびマニュアルのあらゆるコピー)と共 に全てMediaへ返却することにより、いかなる時点でもライセンスを終了できます。また、ライセンス所有者が、本ライ センスの条件をいずれにかかわらず遵守しない場合は、Mediaからの通告なしにライセンスは自動的に終了されま す。このようにライセンスが終了した場合、ライセンス所有者は、本製品、本製品の全てのコピー、および他のプロ グラムに組み込まれた本製品のあらゆる部分(およびマニュアルのあらゆるコピー)をMediaに返却することに同意す るものとします。

制限付き保証

Mediaは、通常の使用条件下で、ソフトウェアが供給されるプログラム媒体が材質、製品状態において、レシートによって証明されるプログラム媒体の入手日から90日間、欠陥がないことを保証します。

上記の点を除いて、本製品は「現状のまま」提供され、明示、暗示のいずれにかかわらず一切の保証を含みません。保証しない例としては、本製品の商品性や特定の目的に対する適合性についての暗示的な保証がありますが、これに限定されるものではありません。本製品の品質や性能に対する全責任は、ライセンス所有者が負うものとします。万一本製品に欠陥があると判明した場合でも、必要な全ての修復、修正に関する全コストはライセンス所有者が負担するものとします(MediaおよびMedia製品の正規販売会社のいずれも、これに関するコストは負担しません)。

補償の制限

Mediaが負う全責任、およびライセンス所有者が受ける補償は以下のもののみに限定されています。

- 1. Mediaの制限付き保証内容を満たさないプログラム媒体が、レシートのコピーと共にMediaへ返送された場合、 プログラム媒体を代替品と交換すること。
- 2. 製品状態において欠陥のないプログラム媒体の代替品をMediaが送付できない場合、本製品の全コピーとレ シートのコピーをMediaへ返送することにより、ライセンス所有者は本ライセンスを終了できる。この場合、製品 の代金は返金されます。

本製品を使用すること、あるいは使用できないことによって発生する逸失利益、節約できると見なされていた金額の 損失、あるいはその他の間接的、例外的、懲罰的、偶発的、結果的な損害賠償、請求、訴訟を含むあらゆる損害賠償 に対して、いかなる場合でもMediaは責任を負いません。この場合、そのような損害賠償、請求、訴訟などの可能性に ついてMediaが通告されていても、Mediaは責任を負いません。

司法管轄によっては、偶発的、あるいは結果的な損害に対する保証の制限や除外を認めていないので、上記の 制限や除外が当てはまらない場合もあります。

商標について

Gel-Pro AnalyzerTMはMediaの商標です。したがって、この商標に対する権利、ライセンス、および利益は供与されません。

準拠法

本ライセンスはアメリカ合衆国メリーランド州法に準拠し、同法によって解釈されるものとします。同法はメリーランド 州内で締結したライセンスに対して適用され、履行されます。

可分性

万一、司法管轄内の法廷により本ライセンスの一部が無効、あるいは履行不可能だと宣告された場合でも、それ以 外の条件は完全な効力を有するものとします。

権利放棄

本ライセンス内に記載されたあらゆる権利について、いずれかの側が自己の権利を行使しなかった場合でも、また は契約違反時に相手側に対して行動を起こさなかった場合でも、それ以降に権利を行使する権利、または契約違 反時に相手側に対して行動を起こす権利を放棄したとは見なさないこととします。

完全合意

ライセンス所有者は本ライセンスを読み、理解し、ライセンスの条件に同意したことを認めたものとします。さら に、本ライセンスがライセンス所有者個人とMediaの間での排他的な契約として締結されたこと、および、本ライセ ンスの内容に関して、ライセンス所有者とMediaとの間における口頭、書面、その他の形態によるあらゆる提案、 あるいは本ライセンス以前に取り交わされたあらゆる契約は、本ライセンスの締結により無効になることに同意す るものとします。

NIPPON ROPER

株式会社 日本ローパー メディアサイバネティクス事業部

〒135-0033東京都江東区深川2-8-19サクライビル3F TEL 03-5639-2751 FAX 03-5639-2774

Homepage: http://www.planetron.co.jp E-Mail: mc_support@roper.co.jp